Math, asked by singhsahil94, 1 year ago

system of equations graphically:
3x + y + 1 = 0
2x - 3y + 8 = 0​

Attachments:

Answers

Answered by AbhijithPrakash
3

Answer:

3x+y+1=0,\:2x-3y+8=0\quad :\quad y=2,\:x=-1

Step-by-step explanation:

\begin{bmatrix}3x+y+1=0\\ 2x-3y+8=0\end{bmatrix}

\mathrm{Isolate}\:x\:\mathrm{for}\:3x+y+1=0

3x+y+1=0

\gray{\mathrm{Subtract\:}y\mathrm{\:from\:both\:sides}}

3x+y+1-y=0-y

\gray{\mathrm{Simplify}}

3x+1=-y

\gray{\mathrm{Subtract\:}1\mathrm{\:from\:both\:sides}}

3x+1-1=-y-1

\gray{\mathrm{Simplify}}

3x=-y-1

\gray{\mathrm{Divide\:both\:sides\:by\:}3}

\dfrac{3x}{3}=-\dfrac{y}{3}-\dfrac{1}{3}

\gray{\mathrm{Simplify}}

x=\dfrac{-y-1}{3}

\gray{\mathrm{Subsititute\:}x=\dfrac{-y-1}{3}}

\begin{bmatrix}2\cdot \dfrac{-y-1}{3}-3y+8=0\end{bmatrix}

\mathrm{Isolate}\:y\:\mathrm{for}\:2\cdot\dfrac{-y-1}{3}-3y+8=0

2\cdot \dfrac{-y-1}{3}-3y+8=0

\gray{\mathrm{Subtract\:}8\mathrm{\:from\:both\:sides}}

2\cdot \dfrac{-y-1}{3}-3y+8-8=0-8

\gray{\mathrm{Simplify}}

2\cdot \dfrac{-y-1}{3}-3y=-8

\mathrm{Expand\:}2\cdot \dfrac{-y-1}{3}-3y:\quad -\dfrac{11y}{3}-\dfrac{2}{3}

-\dfrac{11y}{3}-\dfrac{2}{3}=-8

\gray{\mathrm{Multiply\:both\:sides\:by\:}3}

-\dfrac{11y}{3}\cdot \:3-\dfrac{2}{3}\cdot \:3=-8\cdot \:3

\gray{\mathrm{Simplify}}

-11y-2=-24

\gray{\mathrm{Divide\:both\:sides\:by\:}-11}

\dfrac{-11y}{-11}=\dfrac{-22}{-11}

\gray{\mathrm{Simplify}}

y=2

\gray{\mathrm{For\:}x=\dfrac{-y-1}{3}}

\gray{\mathrm{Subsititute\:}y=2}

x=\dfrac{-2-1}{3}

\gray{\dfrac{-2-1}{3}=-1}

x=-1

\gray{\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}}

y=2,\:x=-1

Attachments:
Similar questions