Math, asked by vishalchouhanab1849, 1 year ago

T5:t3=5:2 then find the value of t15:t7

Answers

Answered by harendrachoubay
12

The value of  t_15:t_7  = 20 : 8 or 5 : 2

Step-by-step explanation:

We have,

t_5:t_3  = 5 : 2

To find, the value of t_15:t_7=

Let a, d be the first term and common difference respectively.

The nth term of an AP,

t_n=a+(n-1)d

t_5:t_3=5:2

\dfrac{t_5}{t_3}=\dfrac{5}{2}

\dfrac{a+4d}{a+2d}=\dfrac{5}{2}

a+4d=5              ..... (1)

and a + 2d = 2      ......(2)

Subtracting (1) from (2), we get

a + 4d - a - 2d = 5 - 2

⇒ 2d = 3

⇒ d=\dfrac{3}{2}

Put d = \dfrac{3}{2} in (1), we get

a +4(\dfrac{3}{2})= 5

⇒ a = 5 - 6 = - 1

t_15 = a + 14d

=-1+14(\dfrac{3}{2})= - 1 + 21 = 20

t_15 = 20

and t_7 = a + 6d

=-1+6(\dfrac{3}{2})=-1+9

t_7= 8

∴ The value of  = 20 : 8 or 5 : 2

Similar questions