Math, asked by BrainlyHelper, 1 year ago

त्रिज्या 21 cm वाले वृत्त का एक चाप केंद्र पर 60^{o} का कोण अंतरित करता है। ज्ञात कीजिएः
(i) चाप की लंबाई
(ii) चाप द्वारा बनाए गए त्रिज्यखंड का क्षेत्रफल
(iii) संगत जीवा द्वारा बनाए गए वृत्तखंड का क्षेत्रफल

Answers

Answered by abhi178
12
त्रिज्या 21 cm वाले वृत्त का एक चाप केंद्र पर 60^{o} का कोण अंतरित करता है।

(i) हम जानते हैं कि चाप की लम्बाई = \frac{\theta}{360^{\circ}}2\pi r

= 60°/360° × 2 × 22/7 × 21

= 1/6 × 2 × 22 × 3

= 22 cm


(ii) त्रिज्यखण्ड का क्षेत्रफल = \frac{\theta}{360^{\circ}}\pi r^2

= 60°/360° × 22/7 × 21 × 21

= 1/6 × 22 × 3 × 21

= 11 × 21 = 231 cm²


(iii) ∆AOB में,
∠OAB = ∠OBA (चूँकि OA = OB)
∠OAB + ∠AOB + ∠OBA = 180°
2∠OAB + 60° = 180°
∠OAB = 60°

अतः त्रिभुज के सभी कोण 60° हैं इसीलिए यह एक समबाहु त्रिभुज है ।


अब, संगत जीवा द्वारा बनाया गया वृत्तखण्ड का क्षेत्रफल
= त्रिज्यखण्ड का क्षेत्रफल - त्रिभुज का क्षेत्रफल

= 231 cm² - √3/4 × 21 × 21 [ समबाहु ∆ का क्षेत्रफल = √3/4 × भुजा² ]

= 231 cm² - √3/4× 441

= (231 - 441√3/4) cm²
Attachments:
Similar questions