tan⁻¹(x+1)+tan⁻¹(x-1)=tan⁻¹8/31,Solve it.
Answers
Answered by
4
Solution :
Given, tan⁻¹(x + 1) + tan⁻¹(x - 1) = tan⁻¹(8/31)
⇒ tan⁻¹[{(x + 1) + (x - 1)}/{1 - (x + 1)(x - 1)}] = tan⁻¹(8/31)
⇒ {x + 1 + x - 1}/{1 - (x² - 1)} = 8/31
⇒ 2x/(1 - x² + 1) = 8/31
⇒ 2x/(2 - x²) = 8/31
⇒ 31 * x = 4 (2 - x²)
⇒ 31x = 8 - 4x²
⇒ 4x² + 31x - 8 = 0
⇒ 4x² + 32x - x - 8 = 0
⇒ 4x (x + 8) - 1 (x + 8) = 0
⇒ (x + 8) (4x - 1) = 0
∴ either x + 8 = 0 or, 4x - 1 = 0
⇒ x = - 8 or, x = 1/4 [ but x > 0 ]
∴ the required solution is x = 1/4.
Answered by
8
Answer:
tex]\huge\underline\mathfrak\purple{Solution}[/tex]
Attachments:
Similar questions