tan 10° × tan 50° +tan 50°×tan 70° +tan 70° × tan 170° = 3
Answers
Answer:
LET
A=tanx=t
tan60=p=√3
p²=3
② LET
B=tan(x+60)
=(t+p)/(1-tp)
③ LET
C=tan(x+120)
=(t- p)/(1+tp)
④∴
(B+C)
={(1+tp)(t+p)+(1-tp)(t-p)}/(1+tp)(1-tp)
=(2t+2tp²)/{1-t²p²}
=(2t+6t)/{1–3t²}
=8t/{1–3t²}
⑤ ∴
A+(B+C)
t+{8t/(1–3t²)}
=(t-3t³+8t)/(1–3t²)
=(9t-3t³)/(1–3t²)
=3{(3t-t³)/(1–3t²)}
=3tan3x
⑥∴
tanx+tan(x+60)+tan(x+120)≡3tan3x
Plug in x=10→
∴ tan10+tan70+tan130=3tan30.
∴ tan10+tan70—tan50=3{√3/3}=√3
∴ tan10—tan50+tan70=√3
Answer:
LET
A=tanx=t
tan60=p=√3
p²=3
② LET
B=tan(x+60)
=(t+p)/(1-tp)
③ LET
C=tan(x+120)
=(t- p)/(1+tp)
④∴
(B+C)
={(1+tp)(t+p)+(1-tp)(t-p)}/(1+tp)(1-tp)
=(2t+2tp²)/{1-t²p²}
=(2t+6t)/{1–3t²}
=8t/{1–3t²}
⑤ ∴
A+(B+C)
t+{8t/(1–3t²)}
=(t-3t³+8t)/(1–3t²)
=(9t-3t³)/(1–3t²)
=3{(3t-t³)/(1–3t²)}
=3tan3x
⑥∴
tanx+tan(x+60)+tan(x+120)≡3tan3x
Plug in x=10→
∴ tan10+tan70+tan130=3tan30.
∴ tan10+tan70—tan50=3{√3/3}=√3
∴ tan10—tan50+tan70=√3
Step-by-step explanation: