Math, asked by pr065483, 1 year ago

Tan ^3 theta / 1+tan ^2 theta + cot^3 theta /1+cot ^2 theta = sec theta × cosec theta - 2sin theta × cos theta

Answers

Answered by dishabucha
6

Answer:

Step-by-step explanation:

Tan*3/1+tan*2 + cot*3/1+cot*2

Sin*3/cos*3÷1+sin*2+cos² + cos³/sin³÷1+cos²/sin²

Sin³/cos³÷ sin²+cos²/cos² + cos³/sin³ ÷ sin² + cos²

Sin³/cos³ ÷ 1/cos² + cos³/sin³ ÷ 1/sin²

Sin³/cos. + cos³/sin

Sin*4+ cos*4 ÷ sin × cos

(Sin²)² + (cos²)² ÷ sin × cos

(Sin²+ cos²)² - 2 sin²×cos² ÷ sin×cos

1-2sin²×cos²÷ sin×cos

1/sin×cos -2sin²×cos²/sin×cos

Sec×cosec - 2sin×cos

Lhs=Rhs

Hence proved

Hope it helps

Plzz mark it as brainliest.... Plz

Answered by TRISHNADEVI
9

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: QUESTION \:  \: } \mid}}}}}

 \tt{ \:  \: Prove  \:  \:  \: that,  \:  \: } \\  \\  \tt{\frac{tan {}^{3 } \theta }{1 + tan {}^{2}  \theta}  +  \frac{cot {}^{3 } \theta }{1 + cot{}^{2}  \theta}  = sec \:  \theta \: cosec \:  \theta- 2 \: sin \:  \theta \: \cos \:  \theta}

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \tt{L.H.S. =  \frac{tan {}^{3 } \theta }{1 + tan {}^{2}  \theta}  +  \frac{cot {}^{3 } \theta }{1 + cot{}^{2}  \theta} } \\  \\    \tt{ =  \frac{ \frac{sin {}^{3}  \theta}{cos {}^{3}   \theta} }{sec {}^{2}  \theta}  +   \frac{ \frac{cos {}^{3}  \theta}{sin {}^{3}   \theta} }{cosec {}^{2}  \theta}} \\  \\  \tt{ = ( \frac{sin {}^{3}  \theta}{cos {}^{3} \theta }  \times  \frac{1}{sec {}^{2} \theta } ) + ( \frac{cos {}^{3}  \theta}{sin {}^{3} \theta }  \times  \frac{1}{cosec {}^{2} \theta } ) } \tt{ = ( \frac{sin {}^{3}  \theta}{cos {}^{3} \theta }  \times  cos {}^{2} \theta) + ( \frac{cos {}^{3}  \theta}{sin {}^{3} \theta }  \times  sin {}^{2} \theta ) }

\tt{  = \frac{sin {}^{3}  \theta}{cos \:  \theta}  +  \frac{cos {}^{3}  \theta}{sin \:  \theta} }  \\  \\ \tt{ =  \frac{sin {}^{4} \theta  + cos {}^{4}  \theta}{sin \: \theta .cos \:  \theta}  }\\  \\    \tt{=  \frac{sin {}^{4} \theta  + cos {}^{4}  \theta  + 2.sin {}^{2} \theta.cos {}^{2}  \theta -2.sin {}^{2} \theta.cos {}^{2}  \theta }{sin \: \theta .cos \:  \theta} }  \tt{ =  \frac{(sin {}^{2} \theta + cos {}^{2} \theta) {}^{2}    - 2.sin {}^{2} \theta.cos {}^{2}  \theta}{sin \: \theta . cos \:  \theta}}

 \tt{=   \frac{(1) {}^{2}   - 2.sin {}^{2} \theta.cos {}^{2}  \theta }{sin \: \theta. cos \:  \theta}}  \\  \\ \tt{   = \frac{1   - 2.sin {}^{2} \theta.cos  {}^{2}  \theta }{sin \: \theta .cos \:  \theta}} \\  \\ \tt{  =  \frac{1}{sin \: \theta.cos \:  \theta}   -  \frac{2.sin {}^{2}  \theta .cos  {}^{2} \theta}{sin \: \theta .cos \:  \theta} } \\  \\    \tt{=  \frac{1}{sin \:  \theta} . \frac{1}{cos \:  \theta }- 2 \: sin \:  \theta \: \cos \:  \theta }\\  \\ \tt{  = cosec \:  \theta \:sec \:  \theta- 2 \: sin \:  \theta \: \cos \:  \theta } \tt{= sec \:  \theta \: cosec \:  \theta- 2 \: sin \:  \theta \: \cos \:  \theta} \\  \\    \tt{ = R.H.S.}

FORMULA USED

 \tt{1. \:  \: tan  \: A =  \frac{sin \: A}{cos \: A}  \:  \implies \: tan {}^{2}   \: A =  \frac{sin  {}^{2} \: A}{cos {}^{2}  \: A}  } \\  \\  \tt{2. \:  \: cot  \: A =  \frac{cos \: A}{sin\: A}  \:  \implies \: cot{}^{2}   \: A =  \frac{cos  {}^{2} \: A}{sin {}^{2}  \: A} } \\  \\  \tt{3. \:  \:1 + tan {}^{2} A = sec {}^{2} A } \\  \\ \tt{4. \:  \:1 + cot{}^{2} A = cosec {}^{2} A } \\  \\  \tt{5. \:  \:  \frac{1}{sec \: A} = cos \: A } \\  \\  \tt{6. \: \:  \frac{1}{cosec \:A }  = sin \: A } \\  \\

Similar questions