Math, asked by samtennyson473, 11 months ago

tan A. = 1/root 3 tan B = root 3
tan (A+B) = ?​

Answers

Answered by Sharad001
55

Question :-

 \sf{ \tan( {A} )  =  \frac{1}{ \sqrt{3} }  \:  \:  \: and \:  \tan(B)  =  \sqrt{3} } \\  \sf{then \:find  \:  \tan(A+B)  }

Answer :-

\implies  \boxed{\bf{\tan(A+B)  =  \infty}} \:

Formula used :-

 \rightarrow \sf{ \tan(A+B)  =  \frac{ \tan(A)  +  \tan(B) }{1 -  \tan(A)   \tan(B) } } \\  \\

_________________________________

Solution :-

Given that ,

 \implies \sf{  \tan(A)  =  \frac{1}{ \sqrt{3} }  \: and \:  \tan(B)  =  \sqrt{3} } \\

Therefore,

 \rightarrow \sf{\tan(A+B)  =  \frac{ \frac{1}{ \sqrt{3} }  +  \sqrt{ 3} }{1 -  \frac{1}{ \sqrt{3}  \:  \: }  \:  \sqrt{3}  } } \\  \\  \implies \sf{\frac{ \frac{1 + 3}{ \sqrt{3} } }{1 - 1} } \\  \\  \implies \:  \frac{ \frac{4}{ \sqrt{3} } }{0}  \\  \\   \implies  \boxed{\bf{\tan(A+B)  =  \infty}}

_________________________________

Answered by RvChaudharY50
51

\color {red}\huge\bold\star\underline\mathcal{Question:-}

\textbf{we have to find value of tan(A+B)}

\huge\underline\blue{\sf Given:} TanA = 1/3 , tanB = 3

\</strong><strong>l</strong><strong>a</strong><strong>r</strong><strong>g</strong><strong>e</strong><strong>\boxed{\fcolorbox{fuchsia}{grey}{Solution</strong><strong> </strong><strong>(</strong><strong>1</strong><strong>)</strong><strong>:--}}

we know that Tan30° = 1/√3 and Tan60° = √3

so,

TanA = 1/3 = Tan30°

\large\red{\boxed{\sf </strong><strong>A</strong><strong>=</strong><strong>3</strong><strong>0</strong><strong>°</strong><strong>}}

TanB = 3 = Tan30°

\large\</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{\boxed{\sf A=</strong><strong>6</strong><strong>0°}}

so,

Tan(A+B) = Tan(30°+60°) = Tan90°

\large\</strong><strong>p</strong><strong>i</strong><strong>n</strong><strong>k</strong><strong>{\boxed{\sf </strong><strong>Tan</strong><strong>(</strong><strong>A</strong><strong>+</strong><strong>B</strong><strong>)</strong><strong>\</strong><strong>:</strong><strong>=</strong><strong>\infty</strong><strong>}}

\rule{200}{4}

\large\boxed{\fcolorbox{fuchsia}{grey}{Solution (</strong><strong>2</strong><strong>):--}}

we know the formula ,

 \tan(a + b)   =  \frac{tana + tanb}{1 - tana \times tanb}

\textbf{</strong><strong>Putting</strong><strong> </strong><strong>Given</strong><strong> </strong><strong>values</strong><strong> </strong><strong>here</strong><strong> </strong><strong>we</strong><strong> </strong><strong>get</strong><strong>}

 \tan(a + b)  =  \frac{ \frac{1}{ \sqrt{3}  } +  \sqrt{3}  }{1 -  \frac{1}{ \sqrt{3} } \times  \sqrt{3}  }  \\  \\  \\  \\  \tan(a + b)  =  \frac{ \frac{(1 + 3)}{ \sqrt{3} } }{1 - 1}  \\  \\  \\  \tan(a + b)  =  \frac{ \frac{4}{ \sqrt{3} } }{0}  \\  \\  \\  \tan(a + b)  =  \infty

so,

\large\</strong><strong>b</strong><strong>l</strong><strong>u</strong><strong>e</strong><strong>{\boxed{\sf Tan(A+B)\:=\infty}}

\huge\underline\mathfrak\green{Hope\:it\:Helps\:You}

Similar questions