Tan (A+30°) +Cot (A-30°) =1/Sin2A-Sin60°
Answers
Answered by
170
tan(a+30)+cot(a-30) = 1/sin 2a - sin60
take LHS
tan(a+30) +cot(a+30)
>> = sin(a+30)/cos(a+30) + cos(a-30)/sin(a-30)
taking LCM
>> = sin(a+30)sin(a-30) + cos(a+30)cos(a-30)/cos(a+30)sin(a-30)
using cos A cos B+sin A sin B = cos(A-B) (in numerator)
>> = cos(a+30 - (a-30))/cos(a+30)sin(a-30)
>> = cos(60)/cos(a+30)sin(a-30)
putting cos60=1/2
>> = 1/2cos(a+30)sin(a-30)
but 2cosAsinB = sin 2 A - sin 2 B
>> = 1/sin 2 a - sin 2(30)
>> = 1/sin 2a - sin60
take LHS
tan(a+30) +cot(a+30)
>> = sin(a+30)/cos(a+30) + cos(a-30)/sin(a-30)
taking LCM
>> = sin(a+30)sin(a-30) + cos(a+30)cos(a-30)/cos(a+30)sin(a-30)
using cos A cos B+sin A sin B = cos(A-B) (in numerator)
>> = cos(a+30 - (a-30))/cos(a+30)sin(a-30)
>> = cos(60)/cos(a+30)sin(a-30)
putting cos60=1/2
>> = 1/2cos(a+30)sin(a-30)
but 2cosAsinB = sin 2 A - sin 2 B
>> = 1/sin 2 a - sin 2(30)
>> = 1/sin 2a - sin60
Answered by
15
Step-by-step explanation:
tan(a+30)+cot(a-30) = 1/sin 2a - sin60
take LHS
tan(a+30) +cot(a+30)
>> = sin(a+30)/cos(a+30) + cos(a-30)/sin(a-30)
taking LCM
>> = sin(a+30)sin(a-30) + cos(a+30)cos(a-30)/cos(a+30)sin(a-30)
using cos A cos B+sin A sin B = cos(A-B) (in numerator)
>> = cos(a+30 - (a-30))/cos(a+30)sin(a-30)
>> = cos(60)/cos(a+30)sin(a-30)
putting cos60=1/2
>> = 1/2cos(a+30)sin(a-30)
but 2cosAsinB = sin 2 A - sin 2 B
>> = 1/sin 2 a - sin 2(30)
>> = 1/sin 2a - sin60
Similar questions