Math, asked by diyasingh3095, 1 month ago

tan A + cot A = sec A cosec A​

Answers

Answered by kumaririta1220
1

Step-by-step explanation:

LHS =

tan A +cot A = sec A cosec A

sinA/cos A + cos A / sin A

sin² A + cos² A / cos A sin A

1 / cosA sinA ( sin²A + cos² A = 1)

sec A cosec A

LHS = RHS

Proved

Answered by Anonymous
12

\malteseGiven to prove:-

tanA+cotA = secA\: cosecA

\malteseSolution :-

Take L.H.S tanA+cotA

From trigonometric relations ,

tanA =\dfrac{sinA}{cosA}

cotA = \dfrac{cosA}{sinA}

Substituting the values

tanA +cotA = \dfrac{sinA}{cosA } +\dfrac{cosA}{sinA}

Take L.C.M to the denominator

= \dfrac{sinA(sinA)+cosA(cosA)}{sinA\:cosA}

= \dfrac{sin^2A+cos^2A}{sinA\:cosA}

 From trigonometric identities,

sin^2A +cos^2A = 1

=\dfrac{1}{sinA\:cosA}

= \dfrac{1}{sinA } \times \dfrac{1}{cosA}

From trigonometric relations , We know that

1/sinA = cosecA and 1/cosA = secA

= cosecA\times secA

= secA \:cosecA

Hence, L.H.S = R.H.S

Proved !

\malteseKnow more:-

\maltese Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

\malteseTrigonometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

\malteseTrigonometric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Similar questions