Tan theta=20/21then find the value of 1-sin theta+cos theta/1+sin theta+cos theta
Answers
Given
⇒Tanθ = 20/21
To Find
⇒(1-Sinθ + Cosθ)/(1+Sinθ+Cosθ)
First of all We have to find Sinθ and Cosθ
So take
⇒Tanθ = 20/21 = Perpendicular(p)/Base(b)
We get
⇒Perpendicular = 20 , Base(b) = 21 and Hypotenuse(h) = h
Using Pythagoras theorem
⇒h² = p² + b²
⇒h² = (20)² + (21)²
⇒h² = 400 + 441
⇒h² = 841
⇒h = √(841)
⇒h = 29
We get
⇒Perpendicular = 20 , Base(b) = 21 and Hypotenuse(h) = 29
Then
⇒Sinθ = P/h and Cosθ = b/h
⇒Sinθ = 20/29 and Cosθ = 21/29
Now Put the value on
⇒(1-Sinθ + Cosθ)/(1+Sinθ+Cosθ)
⇒(1-20/29 + 21/29)/(1+20/29 + 21/29)
⇒{(29-20+21)/29}/{29+20+21)/29}
⇒{(50 - 20)/29}/{(50+20)/29}
⇒(30/29)/(70/29)
⇒30/29 ×29/70
⇒30/70
⇒3/7
Answer = 3/7
Step-by-step explanation:
ANSWER ✍️
Given
⇒Tanθ = 20/21
To Find
⇒(1-Sinθ + Cosθ)/(1+Sinθ+Cosθ)
First of all We have to find Sinθ and Cosθ
So take
⇒Tanθ = 20/21 = Perpendicular(p)/Base(b)
We get
⇒Perpendicular = 20 , Base(b) = 21 and Hypotenuse(h) = h
Using Pythagoras theorem
⇒h² = p² + b²
⇒h² = (20)² + (21)²
⇒h² = 400 + 441
⇒h² = 841
⇒h = √(841)
⇒h = 29
We get
⇒Perpendicular = 20 , Base(b) = 21 and Hypotenuse(h) = 29
Then
⇒Sinθ = P/h and Cosθ = b/h
⇒Sinθ = 20/29 and Cosθ = 21/29
Now Put the value on
⇒(1-Sinθ + Cosθ)/(1+Sinθ+Cosθ)
⇒(1-20/29 + 21/29)/(1+20/29 + 21/29)
⇒{(29-20+21)/29}/{29+20+21)/29}
⇒{(50 - 20)/29}/{(50+20)/29}
⇒(30/29)/(70/29)
⇒30/29 ×29/70
⇒30/70
⇒3/7
Answer = 3/7