Tan theta + cos theta tan theta + cot theta is equal to sec theta + cosec theta
Answers
Answered by
0
No answer is available it is wrong question
Answered by
0
Answer :
Given
Sin θ ( 1 + tan θ ) + Cos θ ( 1 + Cot θ ) = Sec θ + Cosec θ
Taking L.H.S.
⇒Sin θ ( 1 + tan θ ) + Cos θ ( 1 + Cot θ )
⇒Sin θ ( 1 + Sin θCos θ ) + Cos θ ( 1 + Cos θSin θ )
⇒Sin θ ( Cos θ + Sin θCos θ ) + Cos θ (Sin θ + Cos θSin θ)
⇒Sin θCos θ ( Sin θ + Cos θ ) + Cos θSin θ( Sin θ + Cos θ )
⇒( Sin θ + Cos θ ) ( Sin θCos θ + Cos θSin θ )
⇒( Sin θ + Cos θ ) (Sin2θ + Cos2θSin θ Cos θ)
We know ( Sin 2θ + Cos2θ = 1 ) So, we get
⇒( Sin θ + Cos θ )(1Sin θ Cos θ)
⇒(Sin θSin θ Cos θ +Cos θSin θ Cos θ )
⇒(1Cos θ + 1Sin θ)
⇒Sec θ + Cosec θ
Hence
L.H.S. = R.H.S. ( Hence proved )
Given
Sin θ ( 1 + tan θ ) + Cos θ ( 1 + Cot θ ) = Sec θ + Cosec θ
Taking L.H.S.
⇒Sin θ ( 1 + tan θ ) + Cos θ ( 1 + Cot θ )
⇒Sin θ ( 1 + Sin θCos θ ) + Cos θ ( 1 + Cos θSin θ )
⇒Sin θ ( Cos θ + Sin θCos θ ) + Cos θ (Sin θ + Cos θSin θ)
⇒Sin θCos θ ( Sin θ + Cos θ ) + Cos θSin θ( Sin θ + Cos θ )
⇒( Sin θ + Cos θ ) ( Sin θCos θ + Cos θSin θ )
⇒( Sin θ + Cos θ ) (Sin2θ + Cos2θSin θ Cos θ)
We know ( Sin 2θ + Cos2θ = 1 ) So, we get
⇒( Sin θ + Cos θ )(1Sin θ Cos θ)
⇒(Sin θSin θ Cos θ +Cos θSin θ Cos θ )
⇒(1Cos θ + 1Sin θ)
⇒Sec θ + Cosec θ
Hence
L.H.S. = R.H.S. ( Hence proved )
Similar questions