Math, asked by mariammajoseph, 1 year ago

Tan theta plus Sec theta minus 1 the whole divide by tan theta minus Sec theta plus 1 equals cos theta by 1 minus sin theta. Pls prove this fast .. Thank u

Answers

Answered by gaurav2013c
242
Solution is in the attachment........
Attachments:

mariammajoseph: Thanks a lot
Answered by sharonr
22

Tan theta plus Sec theta minus 1 the whole divide by tan theta minus Sec theta plus 1 equals cos theta by 1 minus sin theta is proved

Solution:

Given that we have to prove:

\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}=\frac{\cos \theta}{1-\sin \theta}

Now lets solve left hand side

L . H . S=\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}  ---- eqn 1

\text { we know } \sec ^{2} \theta-\tan ^{2} \theta=1

Apply this in eqn 1 we get

=\frac{\tan \theta+\sec \theta-\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}{\tan \theta-\sec \theta+1}

On expanding we get,

=\frac{\tan \theta+\sec \theta-(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{\tan \theta-\sec \theta+1}

=\frac{(\tan \theta+\sec \theta)\{1-(\sec \theta-\tan \theta)\}}{\tan \theta-\sec \theta+1}

=\frac{(\tan \theta+\sec \theta)\{1-\sec \theta+\tan \theta\}}{\tan \theta-\sec \theta+1}

\begin{array}{l}{=\tan \theta+\sec \theta} \\\\ {=\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}=\frac{\sin \theta+1}{\cos \theta}} \\\\ {\frac{1+\sin \theta}{\cos \theta} \times \frac{1-\sin \theta}{1-\sin \theta}=\frac{1-\sin ^{2} \theta}{\cos \theta(1-\sin \theta)}}\end{array}

\begin{array}{l}{=\frac{\cos ^{2} \theta}{\cos \theta(1-\sin \theta)}=\frac{\cos \theta}{1-\sin \theta}=\mathrm{R} . \mathrm{H.S}} \\\\ {\text { Hence Proved }}\end{array}

Learn more about this topic

Sin theta -cos theta plus one / sin theta plus cos theta minus one is equal to one divided by sec theta minus tan theta

https://brainly.in/question/7240829

Prove that sin theta minus cos theta plus one upon sin theta + cos theta minus one is equals to one upon sec theta minus 10 theta

https://brainly.in/question/5562344

Similar questions