Math, asked by guptaridhav49, 1 year ago

tan theta. = sin alpha - cos alpha / sin alpha + cos alpha then find sin alpha +cos alpha = pulse minus root 2


guptaridhav49: Here one mistake i.e sin alpha + cos alpha = pulse minus root 2
guptaridhav49: Plus minus root 2 cos theta

Answers

Answered by tulasi63
67
this answer is helpful to you...
Attachments:
Answered by mysticd
54

Answer:

sin\alpha+cos\alpha=\sqrt{2} cos\alpha

Step-by-step explanation:

 Given \:tan\theta=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}

 Divide \: numerator \:and\\denominator \:by \:cos\alpha,\:we \:get

=\frac{\frac{sin\alpha}{cos\alpha}-\frac{cos\alpha}{cos\alpha}}{\frac{sin\alpha}{cos\alpha}+\frac{cos\alpha}{cos\alpha}}

=\frac{tan\alpha-1}{tan\alpha+1}

=\frac{tan\alpha-tan45\degree}{tan\alpha+tan45\degree}

=tan(\alpha-45)

\implies tan\theta =tan(\alpha-45)

\implies \theta = \alpha-45

\implies \alpha = \theta+45

Now,\\sin\alpha+cos\alpha\\=sin(\alpha+45)+cos(\alpha+45)\\=sin\alpha cos45+sin45 cos \alpha\\+ cos\alpha cos45-sin\alpha sin45

= sin\alpha\times  \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\times cos\alpha\\+cos\alpha \times \frac{1}{\sqrt{2}}-sin\alpha \times \frac{1}{\sqrt{2}}

=2\times \frac{1}{\sqrt{2}} cos\alpha

=\frac{\sqrt{2}\times \sqrt{2}}{\sqrt{2}} cos\alpha

=\sqrt{2} cos\alpha

Therefore,

sin\alpha+cos\alpha=\sqrt{2} cos\alpha

•••♪

Similar questions