tan thita upon 1+ tan square thita =sin thita ×cos thita
Answers
Answered by
0
Step-by-step explanation:
Using the identities:
1+tan2θ=sec2θ
1secθ=cosθ
tanθ=sinθcosθ
sin2θ=1−cos2θ
2cos2θ−1=cos2θ
Start:
1−tan2θ1+tan2θ=
1−tan2θsec2θ=
Split the numerator:
1sec2θ−tan2θsec2θ=
cos2θ−sin2θcos2θ⋅cos2θ=
cos2θ−(1−cos2θ)=
2cos2θ−1=
cos2θ
Similar questions