tan3x=cot 5x,(0<x<2Π)
Answers
Answered by
0
Step-by-step explanation:
tan10x2tan5x1−tan25x1−tan25x3tan25xtan5x5xxx=cot5x=1tan5x=2tan25x=1=±13–√=π6+nπ,−π6+nπ,5π6+nπ,11π6+nπ=15nπ+π30,15nπ−π30,π6+15nπ,15(π+5π6+nπ) repeated solution=15nπ+π30,15nπ−π30,π6+15nπ
Similar questions