Math, asked by anjit14, 1 year ago

Tan4theta=2 then Tanthta=?​

Answers

Answered by viswachalla00
0

Answer:

Step-by-step explanation:

Problem 1

Let \displaystyle {a_n}a

n

be a finite arithmetic progression and k be a natural number. \displaystyle a_1=r < 0a

1

=r<0 and \displaystyle a_k=0a

k

=0. Find \displaystyle S_{2k-1}S

2k−1

(the sum of the first 2k-1 elements of the progression).

Problem 2

Solve the equation

\displaystyle 1+4+7+\dots + x = 9251+4+7+⋯+x=925

Problem 3

Let \displaystyle \{a_n\}_1^{100}{a

n

}

1

100

be an arithmetic progression with 100 elements. \displaystyle a_1=5a

1

=5, \displaystyle a_2=8a

2

=8 and so on. \displaystyle \{b_n\}_1^{100}{b

n

}

1

100

also has 100 elements, but \displaystyle b_1=3b

1

=3, \displaystyle b_2=7b

2

=7 and so on. Find how many common elements \displaystyle \{a_n\}{a

n

} and \displaystyle \{b_n\}{b

n

} have.

Problem 4

Let \displaystyle \{a_n\}{a

n

} be a non-constant arithmetic progression. \displaystyle a_1=1a

1

=1 and the following holds true: for any \displaystyle n \ge 1n≥1, the value of \displaystyle \frac{a_{2n}+a_{2n-1}+...+a_{n+1}}{a_n+a_{n-1}+...+a_1}

a

n

+a

n−1

+...+a

1

a

2n

+a

2n−1

+...+a

n+1

remains constant (does not depend on \displaystyle nn). Find \displaystyle a_{15}a

15

Similar questions