tan4x=4tanx(1-tan²x)\1-6tan²x+tan⁴x prove that
Answers
Answered by
23
we know, tan(A + B ) = (tanA + tanB )/(1 - tanA.tanB)
if A = B = P
then,
tan2P = 2tanP/(1 - tan²P) we have to use this application here .
now,
LHS = tan4x = tan2(2x)
= 2tan(2x)/{1 - tan² (2x)}
again, tan2x = 2tanx/(1 - tan²x) put it above
= 2{2tanx/(1 - tan²x)}/[1 -{2tanx/(1-tan²x)}²]
= 4tanx/(1 - tan²x)/[1 - 4tan²x/(1 - tan²x)²]
= 4tanx(1 - tan²x)/[(1 - tan²x)-4tan²x]
= 4anx(1-tan²x)/[1 + tan⁴x - 2tan²x - 4tan²x ]
= 4tanx(1-tan²x)/[1 + tan⁴x - 6tan²x] = RHS
Answered by
8
Similar questions