tan8a-tan5a-tan3a show that tan8a.tan5a.tan3a
Answers
Answered by
31
Find more:
Prove: (tanA+2)(2tanA+1)=5tanA+2sec^2 A
https://brainly.in/question/2543204#
Answered by
2
Step-by-step explanation:
\textbf{Using}Using
\boxed{\bf\,tan(A+B)=\frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}}
tan(A+B)=
1−tanAtanB
tanA+tanB
tan\,8A=tan(5A+3A)tan8A=tan(5A+3A)
tan\,8A=\displaystyle\frac{tan\,5A+tan\,3A}{1-tan\,5A+tan\,3A}tan8A=
1−tan5A+tan3A
tan5A+tan3A
\implies\,tan,8A[1-tan\,5A\,tan\,3A]=tan\,5A+tan\,3A⟹tan,8A[1−tan5Atan3A]=tan5A+tan3A
\implies\,tan8A-tan\,8A\,tan\,5A\,tan\,3A=tan\,5A+tan\,3A⟹tan8A−tan8Atan5Atan3A=tan5A+tan3A
\implies\boxed{\bf\,tan\,8A-tan\,5A-tan3A=tan\,8A\,tan\,5A\,tan\,3A}⟹
tan8A−tan5A−tan3A=tan8Atan5Atan3A
Similar questions