Math, asked by nithishkumar123, 1 year ago

tan8a-tan5a-tan3a show that tan8a.tan5a.tan3a

Answers

Answered by MaheswariS
31

\textbf{Using}

\boxed{\bf\,tan(A+B)=\frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}}

tan\,8A=tan(5A+3A)

tan\,8A=\displaystyle\frac{tan\,5A+tan\,3A}{1-tan\,5A+tan\,3A}

\implies\,tan,8A[1-tan\,5A\,tan\,3A]=tan\,5A+tan\,3A

\implies\,tan8A-tan\,8A\,tan\,5A\,tan\,3A=tan\,5A+tan\,3A

\implies\boxed{\bf\,tan\,8A-tan\,5A-tan3A=tan\,8A\,tan\,5A\,tan\,3A}

Find more:

Prove: (tanA+2)(2tanA+1)=5tanA+2sec^2 A

https://brainly.in/question/2543204#

Answered by ketankpatil
2

Step-by-step explanation:

\textbf{Using}Using

\boxed{\bf\,tan(A+B)=\frac{tan\,A+tan\,B}{1-tan\,A\,tan\,B}}

tan(A+B)=

1−tanAtanB

tanA+tanB

tan\,8A=tan(5A+3A)tan8A=tan(5A+3A)

tan\,8A=\displaystyle\frac{tan\,5A+tan\,3A}{1-tan\,5A+tan\,3A}tan8A=

1−tan5A+tan3A

tan5A+tan3A

\implies\,tan,8A[1-tan\,5A\,tan\,3A]=tan\,5A+tan\,3A⟹tan,8A[1−tan5Atan3A]=tan5A+tan3A

\implies\,tan8A-tan\,8A\,tan\,5A\,tan\,3A=tan\,5A+tan\,3A⟹tan8A−tan8Atan5Atan3A=tan5A+tan3A

\implies\boxed{\bf\,tan\,8A-tan\,5A-tan3A=tan\,8A\,tan\,5A\,tan\,3A}⟹

tan8A−tan5A−tan3A=tan8Atan5Atan3A

Similar questions