tanx+tan(x+pi/3)+tan(x+2pi/3)
Answers
Answered by
144
HELLO DEAR,
YOUR QUESTIONS IS--------------If tan x + tan (x + π/3) + tan (x + 2π/3) = 3
prove that tan 3x = 1
we know:- tan(A + B) = [{tanA + tanB}/{1 - tanA.tanB}]
therefore,
tanx + {tanx + tanπ/3}/{1 - tanx.tanπ/3} + {tanx + tan2π/3}/{1 - tanx.tan2π/3} = 3
=> tanx + {tanx + √3}/{1 - √3tanx} + {tanx - √3}/{1 + √3tanx} = 3
=> = 3
=> tanx + {tanx + √3tan²x + √3 + 3tanx + tanx - √3tan²x - √3 + 3tanx}/{1 - 3tan²x} = 3
=> tanx + {8tanx}/{1 - 3tan²x} = 3
=> {tanx - 3tan³x + 8tanx}/{1 - 3tan²x} = 3
=> {9tanx - 3tan³x}/{1 - 3tan²x} = 3
=> 3{tanx - 3tan³x}/{1 - 3tan²x} = 3
we know:- tan3A = {tanA - 3tan³A}/{1 - 3tan²A}
therefore, tan3x = 3/3
=> tan3x = 1 [hence, proved]
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
76
please like my answer
hope this helps u
Attachments:
Similar questions