tell this..............
Answers
Answer:
7,3 (or) -3,-7
Step-by-step explanation:
Let the numbers be a and b. {Let a > b}
Now,
a - b = 4 ---- (i)
(1/b) - (1/a) = (4/21)
⇒ (a - b)/ab = 4/21
⇒ (a - b) = 4ab/21
⇒ 4 = 4ab/21
⇒ 84 = 4ab
⇒ ab = 21.
⇒ a = (21/b) ---- (ii)
Substitute (ii) in (i), we get
⇒ (21/b) - b = 4
⇒ 21 - b² = 4b
⇒ b² + 4b - 21 = 0
⇒ b² + 7b - 3b - 21 = 0
⇒ b(b + 7) - 3(b + 7) = 0
⇒ b = 3,-7
When b = 3:
a - b = 4
a - 3 = 4
a = 7
When b = -7:
a - b = 4
a + 7 = 4
a = -3
Therefore, the numbers are : 7,3 (or) -3,-7.
Hope it helps!
Let the numbers be a and b
b - a = 4 ...............................(1)
Difference of reciprocal = 4/21
==> 1/a - 1/b = 4/21
==> ( b - a ) / ab = 4/21
==> 4 / ab = 4 / 21 [ From ( 1 )]
==> 1/ab = 1/21
==> ab = 21
==> a = 21/b ......................(2)
Now putting this value in (1) we get :
b - 21/b = 4
==> ( b² - 21) / b = 4
==> b² -21 = 4b
==> b² - 4b - 21 = 0
==> b² - 7b + 3b -21 = 0
==> b ( b - 7 ) + 3 ( b - 7 ) = 0
==> ( b -7 )( b + 3 ) = 0
Either b = 7 or , b = -3
Either
b - a = 4
==> 7 - a = 4
==> a = 3
or ,
b - a = 4
==> -3 - a = 4
==> -a = 4 + 3
==> a = -7
The values are as follows :
Numbers can be 7 and 3 or -7 and -3
#JISHNU#
Hope it helps ^_^
_____________________________________________________________________