Math, asked by khushi02022010, 7 months ago

 \boxed { \sf [tex]\sf  \large \:\underline{  \red{Question}  }:- }[/tex]
solve  \:  {tan}^{ - 1} ( \frac{x}{y} ) { - ten}^{ - 1}   \: \frac{x - y}{x + y} \:
is equal to
(a) π/2
(b) π/3
(c) π/4
(d) -3π/5​

Answers

Answered by Anonymous
118

Answer:

\sf  \large \:\underline{  \red{Given}  }:-

 {ten}^{ - 1}  \:  (\frac{x}{y} ) \:  - te {n}^{ - 1}  \:  \frac{x - y}{x  + y}

 = te {n}^{ - 1} [ \frac{ \frac{x}{y}  -  \frac{x - y}{x + y} }{1 + ( \frac{x}{y}) (\frac{x - y}{x + y})  } ]

❥  \: (ta {n}^{ - 1} y -  { \tan}^{ - 1} \:  y =  {tan}^{1}  -  \frac{x - y}{x + y}

 =   {tan}^{ - 1} \frac{ \frac{ \frac{x(x + y) - (x - y)}{y(x + y)} }{y(x + y) + x(x - y)} }{y(x  + y)}

 =  {tan}^{ - 1}   \:  \: (\frac{ {x}^{2} + xy - xy +  {y}^{2}  }{xy +  {y}^{2} +  {x}^{2}  + xy } )

 =  {tan}^{ - 1}  \:  \: ( \frac{ {x}^{2} +  {y}^{2}  }{ {x}^{2} -  {y}^{2}  } ) =  {tan}^{ - 1}  \: 1 =  \frac{\pi}{4}

 \red {hence \:,the \: correct \: answer \: is }  \: \pink{c}

Answered by Lueenu22
1

Step-by-step explanation:

\bf\huge{Question:-}

 \boxed { \sf [tex]\sf \large \:\underline{ \red{Question} }:- }[/tex]

solve \: {tan}^{ - 1} ( \frac{x}{y} ) { - ten}^{ - 1} \: \frac{x - y}{x + y} \:

is equal to

(a) π/2

(b) π/3

(c) π/4

(d) -3π/5

\bf\huge{answer:-}

your answer is option C

Similar questions