CBSE BOARD X, asked by ΙΙïƚȥΑαɾყαɳΙΙ, 1 day ago

\dag \tt \red{\underline{Here \: is \: your \: Question}}

Attachments:

Answers

Answered by OoAryanKingoO78
1

Answer:

Given Question :-

A solid toy is in the form of a hemisphere surmounted by a right circular cone. The height of the cone is 4 cm and the diameter of the base is 8 cm. Determine the volume of the toy. If a cube circumscribes the toy, then find the difference of the volumes of the cube and the toy. Also find the total surface area of the toy.

\huge \mathbb \pink{ANSWER}

GIVEN :-

A solid toy is in the form of a hemisphere surmounted by a right circular cone.

The height of the cone is 4 cm.

The diameter of the base is 8cm.

TO FIND :-

The volume of the toy.

If a cube circumscribes the toy, then find the difference of the volumes of the cube and the toy.

The total surface area of the toy.

Formula Used :-

 \longmapsto \boxed{ \purple{ \bf \: Volume_{(cone)} = \dfrac{1}{3} \pi \:  {r}^{2}h }}

 \longmapsto \boxed{ \purple{ \bf \:CSA_{(cone)} = \pi \: rl }}

 \longmapsto \boxed{ \purple{ \bf \: Volume_{(hemisphere)} = \dfrac{2}{3} \pi \:  {r}^{3} }}

 \longmapsto \boxed{ \purple{ \bf \: CSA_{(hemisphere)} = 2\pi \:  {r}^{2} }}

 \longmapsto \boxed{ \purple{ \bf \:Volume_{(cube)} =  {(side)}^{3}  }}

where,

r = radius

h = height of cone

l = slant height of cone

CALCULATION :-

1. VOLUME OF TOY

Given that

Radius of cone, r = 4 cm

Height of cone, h = 4 cm

Radius of hemisphere, r = 4 cm

So,

 \pink{\rm :\implies\:Volume_{(toy)} = Volume_{(cone)} + Volume_{(hemisphere)}}

\rm :\implies\:Volume_{(toy)} =  \dfrac{1}{3} \pi \:  {r}^{2}h +  \dfrac{2}{3} \pi \:  {r}^{3}

\rm :\implies\:Volume_{(toy)} =  \dfrac{1}{3} \pi \:  {r}^{2}(h + 2r)

\rm :\implies\:Volume_{(toy)} = \dfrac{1}{3}  \times \dfrac{22}{7}  \times  {4}^{2}  \times (4 + 8)

\rm :\implies\:Volume_{(toy)} = \dfrac{1}{ \cancel3}  \times \dfrac{22}{7}  \times 16 \times  \cancel{12}  \:  \:  \:  ^{4}

\rm :\implies\: \boxed{ \red{ \bf \: Volume_{(toy)} = \dfrac{1408}{7}  \:  {cm}^{3} }}

2. SURFACE AREA OF TOY

Given that

Radius of cone, r = 4 cm

Height of cone, h = 4 cm

Radius of hemisphere, r = 4 cm

So,

Slant (l) height of cone is given by

 \longmapsto \boxed{ \green{ \bf \: {l}^{2}   =  {h}^{2} +  {r}^{2}  }}

\rm :\implies\: {l}^{2}  =  {4}^{2}  +  {4}^{2}

\rm :\implies\: {l}^{2}  = 16 + 16

\rm :\implies\: {l}^{2}  = 32

\rm :\implies\:l  =  \sqrt{32}  = 4 \sqrt{2}  \: cm

\rm :\implies\:l \:  =  \: 4 \times 1.414

\rm :\implies\:l \:  =  \: 5.656 \: cm

Now,

Surface Area of toy is given by

\rm :\implies\: \pink{ \bf \: Surface Area_{(toy)} =CSA_{(cone)} + CSA_{(hemisphere)} }

\rm :\implies\:Surface Area_{(toy)} = \pi \: rl \:  +  \: 2\pi \:  {r}^{2}

\rm :\implies\:Surface Area_{(toy)} = \pi \: r(l \:  +  \: 2r)

\rm :\implies\:Surface Area_{(toy)} = \dfrac{22}{7}  \times 4 \times (5.656 + 8)

\rm :\implies\:Surface Area_{(toy)} = \dfrac{22}{7}  \times 4 \times 13.656

 \longmapsto \boxed{ \green{ \bf \:Surface Area_{(toy)} = 171.68 \:  {cm}^{2}  }}

Now,

According to statement,

The toy is circumscribes by a cube.

So,

Edge of the cube = height of cone + height of hemisphere

So,

Edge of cube, x = 4 + 4 = 8 cm

\rm :\implies\: \pink{ \bf \: Volume_{(cube)} =  {x}^{3} }

\rm :\implies\:Volume_{(cube)} =  {8}^{3}

 \longmapsto \boxed{ \green{ \bf \: Volume_{(cube)} = 512 \:  {cm}^{3} }}

Now,

Difference in the volume of cube and volume of toy is

 \bull\purple{ \bf \: Volume_{(difference)} = Volume_{(cube)} - Volume_{(toy)}}

\rm :\implies\:Volume_{(difference)} =512 - \dfrac{1408}{7}

\rm :\implies\:Volume_{(difference)} =\dfrac{3584 - 1408}{7}

\rm :\implies\:Volume_{(difference)} =\dfrac{2176}{7}

 \longmapsto \boxed{ \green{ \bf \:Volume_{(difference)} =310.86 \:  {cm}^{3}  }}

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Note :-

Scroll from left to right to view the full solution :)

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Answered by INDnaman
0

Answer:

Given Question :-

A solid toy is in the form of a hemisphere surmounted by a right circular cone. The height of the cone is 4 cm and the diameter of the base is 8 cm. Determine the volume of the toy. If a cube circumscribes the toy, then find the difference of the volumes of the cube and the toy. Also find the total surface area of the toy.

\huge \mathbb \pink{ANSWER}ANSWER

GIVEN :-

A solid toy is in the form of a hemisphere surmounted by a right circular cone.

The height of the cone is 4 cm.

The diameter of the base is 8cm.

TO FIND :-

The volume of the toy.

If a cube circumscribes the toy, then find the difference of the volumes of the cube and the toy.

The total surface area of the toy.

Formula Used :-

\longmapsto \boxed{ \purple{ \bf \: Volume_{(cone)} = \dfrac{1}{3} \pi \: {r}^{2}h }}⟼

Volume

(cone)

=

3

1

πr

2

h

\longmapsto \boxed{ \purple{ \bf \:CSA_{(cone)} = \pi \: rl }}⟼

CSA

(cone)

=πrl

\longmapsto \boxed{ \purple{ \bf \: Volume_{(hemisphere)} = \dfrac{2}{3} \pi \: {r}^{3} }}⟼

Volume

(hemisphere)

=

3

2

πr

3

Similar questions