Math, asked by alexa221, 3 months ago


Differentiate \sf {x^{sin\ x}}xsin x , x > 0 w.r.t.x
please help me fast....

Answers

Answered by TheDiamondBoyy
8

Answer:-

 \sf {\underline{\bigstar\ Let\ y\ =\ x^{sin\ x}}}

Taking log Both Side:-

 \sf \mapsto {log\ y\ =\ log\ x^{sin\ x}}

 \sf \mapsto {log\ y\ =\ sin\ x\ .\ log\ x} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf {[log\ a^b\ =\ b\ log\ a]}

 \sf {\underline{\bigstar\ Differentiating\ w.r.t.x}}

 \sf : \implies {\dfrac{d(log\ y)}{dx}\ =\ \dfrac{d}{dx}\ (sin\ x\ log\ x)}

\: \: \: \: \: \: \: \: \: \begin{gathered} \small\boxed { \begin{array}{cc} \sf {By\ product\ rule} \\ \\ \sf {(uv)'\ =\ u'v\ +\ v'u} \\ \\ \sf {Where\ u\ =\ sin\ x\ and\ v\ =\ log\ x} \end{array} } \end{gathered}

 \sf : \implies {\dfrac{d(log\ y)}{dx}\ =\ \dfrac{d(sin\ x)}{dx}\ .\ log\ x\ +\ sin\ x\ .\ \dfrac{d(log\ x)}{dx}}

 \\

 \sf : \implies {\dfrac{d(log\ y)}{dy} \times \dfrac{dy}{dx}\ =\ cos\ x\ log\ x\ +\ sin\ x\ \dfrac{1}{x}}

 \\

 \sf : \implies {\dfrac{dy}{dx}\ \dfrac{1}{y}\ =\ cos\ x\ log\ x\ +\ sin\ x\ \dfrac{1}{x}}

 \\

 \sf : \implies {\dfrac{dy}{dx}\ =\ y\ \bigg(cos\ x\ log\ x\ +\ \dfrac{1}{x}sin\ x \bigg)}

 \\

 \sf {\underline{\bigstar\ Putting\ back\ y\ =\ x^{sin\ x}}}

 \\

 \sf : \implies {\dfrac{dy}{dx}\ =\ x^{sin\ x}\ \bigg(cos\ log\ x\ +\ \dfrac{1}{x}sin\ x \bigg)}

 \\

 \sf : \implies {x^{sin\ x}\ cos\ log\ x\ +\ x^{sin\ x}\ \dfrac{1}{x}sin\ x}

 \\

 \sf : \implies {x^{sin\ x}\ cos\ log\ x\ +\ x^{sin\ x}\ x^{-1}\ sin\ x}

 \\

 {\therefore{\underline{\boxed{\sf {x^{sin\ x}\ cos\ log\ x\ +\ x^{sin\ x\ -\ 1}\ sin\ x}}}}}

Answered by Anonymous
2

Distance is the total movement of an object without any regard to direction. We can define distance as to how much ground an object has covered despite its starting or ending point.

Similar questions