Math, asked by Rocknain3433, 1 year ago

[tex] Find the Matrix A and B, if A+B=\left[\begin{array}{ccc}2&5\\9&0\end{array}\right] and A-B=\left[\begin{array}{ccc}6&3\\-1&0\end{array}\right] [\tex]

Answers

Answered by anand9935
0

Answer:

sorry i don't know that question

Answered by ujalasingh385
0

Answer:

A=\left[\begin{array}{ccc}4&4\\4&0\\\end{array}\right]

B=\left[\begin{array}{ccc}-2&1\\5&0\\\end{array}\right]

Step-by-step explanation:

GIVEN,

A+B=\left[\begin{array}{ccc}2&5\\9&0\\\end{array}\right]

A-B=\left[\begin{array}{ccc}6&3\\-1&0\\\end{array}\right]

\textrm{On Adding both the equations we are going to get,}

2A=\left[\begin{array}{ccc}8&8\\-8&0\\\end{array}\right]

\textrm{Therefore A=}\left[\begin{array}{ccc}4&4\\4&0\\\end{array}\right]

\textrm{ Now Calculating B}

\textrm{As we know A+B=}\left[\begin{array}{ccc}2&5\\9&0\\\end{array}\right]

B=\left[\begin{array}{ccc}2&5\\9&0\\\end{array}\right]-\left[\begin{array}{ccc}4&4\\4&0\\\end{array}\right]

B=\left[\begin{array}{ccc}-2&1\\5&0\\\end{array}\right]

\textrm{Therefore,A=}\left[\begin{array}{ccc}4&4\\4&0\\\end{array}\right]\textrm{and B=}\left[\begin{array}{ccc}-2&1\\5&0\\\end{array}\right]      

Similar questions