Math, asked by bairavaa3302, 1 year ago

[tex] Obtain X and Y if X+Y=A\left[\begin{array}{ccc}1&6&7\\2&5&9\\3&4&8\end{array}\right] ,Where X is a symmetric and Y is a skew-symmetric matrix. [\tex]

Answers

Answered by MaheswariS
0

Answer:

X=\frac{1}{2}\left[\begin{array}{ccc}2&8&10\\8&10&13\\10&13&16\end{array}\right]

Y=\frac{1}{2}\left[\begin{array}{ccc}0&4&4\\-4&0&5\\-4&-5&0\end{array}\right]

Step-by-step explanation:

X+Y=A

A=\left[\begin{array}{ccc}1&6&7\\2&5&9\\3&4&8\end{array}\right]

A^T=\left[\begin{array}{ccc}1&2&3\\6&5&4\\7&9&8\end{array}\right]

Then

X=\frac{1}{2}(A+A^T)

X=\frac{1}{2}(\left[\begin{array}{ccc}1&6&7\\2&5&9\\3&4&8\end{array}\right]+\left[\begin{array}{ccc}1&2&3\\6&5&4\\7&9&8\end{array}\right])

X=\frac{1}{2}\left[\begin{array}{ccc}2&8&10\\8&10&13\\10&13&16\end{array}\right]

\text{since }X=X^T,\text{ X is symmetric matrix}

Y=\frac{1}{2}(A-A^T)

Y=\frac{1}{2}(\left[\begin{array}{ccc}1&6&7\\2&5&9\\3&4&8\end{array}\right]-\left[\begin{array}{ccc}1&2&3\\6&5&4\\7&9&8\end{array}\right])

Y=\frac{1}{2}\left[\begin{array}{ccc}0&4&4\\-4&0&5\\-4&-5&0\end{array}\right]

\text{since }Y=-Y^T,\text{ Y is skew symmetric matrix}

Similar questions