Math, asked by LasterWolfyt, 3 months ago


 \frac{2}{5} (3x - 2) =  \frac{3}{4} (x + 1)
solve please​

Answers

Answered by dishakushwaha
12

Answer:

2/5 ( 3x - 2 ) = 3/4 ( x + 1 )

6x/5 - 4/5 = 3x/4 + 3/4

6x/5 - 3x/4 = 3/4 + 4/5

6x×4 - 3x×5 /20 = 3×5 + 4×4 / 20

24x - 15x / 20 = 15 + 16 / 20

9x/20 = 31/20

9x = 31/20 × 20

9x = 31

x = 31/9

x = 3.444

i hope it helps you

Answered by mathdude500
2

\large\underline\purple{\bold{Solution :-  }}

 \rm :  \implies \:\dfrac{2}{5}  (3x - 2) \: =  \: \dfrac{3}{4} (x + 1)

 \rm :  \implies \:\dfrac{6x - 4}{5}  = \dfrac{3x + 3}{4}

 \rm :  \implies \:4(6x - 4) = 5(3x + 3)

 \rm :  \implies \:24x - 16 = 15x + 15

 \rm :  \implies \:24x - 15x = 15 + 16

 \rm :  \implies \:9x \:  =  \: 31

 \rm :  \implies \:x \:  =  \: \dfrac{31}{9}

Verification

Consider LHS,

 \rm :  \implies \:\dfrac{2}{5} (3x - 2)

On substituting the value of x, we get

 \rm :  \implies \:\dfrac{2}{5} (3 \times \dfrac{31}{9}  - 2)

 \rm :  \implies \:\dfrac{2}{5} (\dfrac{31}{3}  - 2)

 \rm :  \implies \:\dfrac{2}{5}  \times \dfrac{25}{3}

 \rm :  \implies \:\dfrac{10}{3}

Now,

Consider RHS,

 \rm :  \implies \:\dfrac{3}{4} (x + 1)

On substituting the value of x, we get

 \rm :  \implies \:\dfrac{3}{4} (\dfrac{31}{9}  + 1)

 \rm :  \implies \:\dfrac{3}{4}   \times \dfrac{40}{9}

 \rm :  \implies \:\dfrac{10}{3}

 \rm :  \implies \:LHS \:  =  \: RHS

\large{\boxed{\boxed{\bf{Hence, \: x  \:  =  \: \dfrac{31}{9} }}}}

Similar questions