Math, asked by jamalkantiwalpb4qb5, 1 year ago


 \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }
rationalise the denominator

Answers

Answered by ASweety1431
4
Hope it helps you.....✌✌

Thankyou $@
Attachments:

jamalkantiwalpb4qb5: I ask more questions in brainly please give me answer
Answered by Anonymous
11
✴✴ \bf \underline{HEY \: FRIENDS!!}✴✴

-------------------------------------------------------

✴✴ \underline{Here \: is \: your \: answer↓}⬇⏬⤵

⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇

 \boxed{ RATIONALISE:-)}

 \bf{ = \frac{2 + \sqrt{3} }{2 - \sqrt{3} } .}

 \bf{ = \frac{2 + \sqrt{3} }{2 - \sqrt{3} } \times \frac{2 + \sqrt{3} }{2 + \sqrt{3} } .}

 \bf{ = \frac{ {(2 + \sqrt{3} )}^{2} }{ {2}^{2} - { (\sqrt{3}) }^{2} } .}

 \bf{ = \frac{ {2}^{2} + {( \sqrt{3}) }^{2} + 2 \times 2 \times \sqrt{3} }{4 - 3} .}

 \bf{ = 4 + 3 + 4 \sqrt{3} .}

 \boxed{ = 7 +4 \sqrt{3} .}

✅✅ Hence, it is rationalised.✔✔.

✴✴ \boxed{THANKS}✴✴

☺☺☺ \bf \underline{Hope \: it \: is \: helpful \: for \: you}✌✌✌.

jamalkantiwalpb4qb5: I ask more sums inbrainly please give me answer so fast
Similar questions