Math, asked by nikki3432, 5 months ago


 \frac{2}{x}  -  \frac{x + 1}{5}  =  -  \frac{4}{5}
transform to quadratic equation.

Answers

Answered by Asterinn
6

Given :

 \sf\dfrac{2}{x} - \dfrac{x + 1}{5} = - \dfrac{4}{5}

To find :

  • Quadratic equation ( by transforming the given expression )

Solution :

 \implies\sf\dfrac{2}{x} - \dfrac{x + 1}{5} = - \dfrac{4}{5}

LCM of x and 5 = 5x

\implies\sf \dfrac{10 - ( {x}^{2} + x)}{5x} = - \dfrac{4}{5}

\implies\sf \dfrac{10 -  {x}^{2}  -  x}{5x} = - \dfrac{4}{5}

\implies\sf{10 -  {x}^{2}  -  x} = - \dfrac{4}{5}  \times {5x}

\implies\sf{10 -  {x}^{2}  -  x} = - \dfrac{4}{1}  \times {x}

\implies\sf{10 -  {x}^{2}  -  x} = - {4x}

\implies\sf{10 -  {x}^{2}  -  x} + 4x = 0

Taking out -1 common.

\implies\sf{ - 10  + {x}^{2}   +   x}  -  4x = 0

\implies\sf{  {x}^{2}   }  -  3x  - 10= 0

Answer :

\sf{  {x}^{2}   }  -  3x  - 10= 0

Similar questions