Math, asked by cretaeivity, 3 months ago


 \frac{ \sqrt{3}  + 1}{ \sqrt{3} - 1 } = a + b \sqrt{3}
Find the value of a and b
please help with explanation​

Answers

Answered by BrainlicaLDoll
3

\green{\large\underline{\bf{ Question-}}}

\sf{ \dfrac{ \sqrt{3} + 1}{ \sqrt{3} - 1 } = a + b \sqrt{3}}

\green{\large\underline{\bf{Solution-}}}

\sf{ \dfrac{ \sqrt{3} + 1}{ \sqrt{3} - 1 } = a + b \sqrt{3}}

\sf{By\:Rationalising\: it,\: we\:get}

\sf\longmapsto{\dfrac{ (\sqrt{3} + 1)(\sqrt{3} + 1 )}{ (\sqrt{3} - 1 )(\sqrt{3} + 1) }}

\sf{Using\:identity \:\mapsto {a}^{2}- {b}^{2} =(a +b)(a-b)}

Now, the equation becomes \sf\longmapsto{\dfrac{{ (\sqrt{3} + 1)}^{2}}{{{(\sqrt {3})}^{2}}-{(1)}^{2}}= a + b \sqrt{3}}

\sf{Using\:identity \:\mapsto {(a+b)}^{2}={a}^{2} + {b}^{2}+2ab}

\sf\longmapsto{\dfrac{3+1-2{\sqrt{3}}}{2}=a + b \sqrt{3}}

\sf\longmapsto{2+{\sqrt{3}}=a + b \sqrt{3}}

\sf{On\:comparing}

\sf\longmapsto{a\:=\:2\:and\:b\:=\:1}

\green{\large\underline{\bf{Answer-}}}

  • Value of a = 2
  • Value of b = 1

@BrainlicaLDoll

Similar questions