Math, asked by ayush579, 1 year ago

\huge{\bf{\blue {\fbox{\underline{\color{red}{HELP\:ME}}}}}}
️️️️️️️️️
FAST PLEASE HELP ME
GUYS HELP ME ❤️⛄


\huge{\bf{\red {\fbox{\underline{\color{purple}{FAST}}}}}}


<b><marquee>
‌✌️ ✨I THINK IT HELPED YOU✨ ✌️ 

Attachments:

Answers

Answered by Avengers00
19
\underline{\underline{\huge{\textbf{Solution:}}}}

Given,
O is the centre of the circle

\underline{\large{\textsf{Step-1:}}}
Note angle subtended by arc XY and following result

Arc XY subtends \angle{XOY} at Point 'O' and \angle{XZY} at Point 'Z' on the the remaining part of the circle.

\therefore \angle{XOY} = 2\angle{XZY} ————[1]

\underline{\large{\textsf{Step-2:}}}
Note angle subtended by arc XY and following result

Arc XY subtends \angle{YOZ} at Point 'O' and \angle{YXZ} at Point 'X' on the the remaining part of the circle.

\therefore \angle{YOZ} = 2\angle{YXZ} ————[2]

\underline{\large{\textsf{Step-3:}}}
Adding [1] and [2]

\implies \angle{XOY} + \angle {YOZ}= 2\angle{XZY} + 2\angle{YXZ}

\implies \angle{XOY} + \angle {YOZ}= 2(\angle{XZY} + \angle{YXZ}) ————[3]

\underline{\large{\textsf{Step-4:}}}
Rewrite LHS of Equation [3]

We have,
\angle{XOY} + \angle {YOZ}= \angle{XOZ} ————[4]

\underline{\large{\textsf{Step-5:}}}
Substitute [4] in [3]

\therefore
\mathbf{\angle{XOZ} = 2(\angle{XZY} + \angle{YXZ})}

\textsf{Hence Proved}
Attachments:
Similar questions