Math, asked by Anonymous, 9 months ago


\huge{\mathcal{\purple{Question for Brainly Stars and Moderator}}}

Attachments:

Answers

Answered by TRISHNADEVI
23

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: We  \:  \:  know \:  \:  that, \:  \: }} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:   \sf{ \red{ \star \:  \: Linear  \:  \: pair \:  \:  of \:  \:  angles  \:  \: must \:  \:  add  \:  \: up \:  \:} }\\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{\red{  to  \:  \: 180 \degree.}}

 \underline{ \text{ \: In  \: the \:  diagram, \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \bf{\angle BAC + 110 \degree = 180 \degree \:  \:  \:  \:   [Linear \:  \:  pair]} \\  \\  \bf{\implies  \angle BAC = 180 \degree - 110 \degree} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf{\therefore \:   \pink{\angle BAC = 70 \degree}}

  \mathfrak{Again,} \\\:  \:  \:  \:  \:  \:  \underline{ \mathfrak{ \:  \: We \:  \:  know \:  \:  that, \:  \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \red{ \star \:  \: An  \:  \: exterior angle \:  \:  of \:  \:  a  \:  \: triangle  \:  \: is \:  \: }} \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \red{ equal \:  \:  to \:  \:  the \:  \:  sum  \:  \: of  \:  \: the \:  \:  opposite \:  \: }} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \red{ interior \:  \:  angles.}}

 \text{ \underline{ \: In  \: the \:  diagram, \: }} \\  \\ \:  \:  \:  \:  \:  \:  \bf{\angle BAC + \angle ABC = 120 \degree} \\  \\  \bf{\implies 70 \degree + x \degree = 120 \degree} \\  \\  \bf{\implies x \degree = 120 \degree - 70 \degree} \\  \\ \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \bf{ \therefore  \:  \:  \pink{x \degree = 50 \degree}}

 \huge{ \underline{ \tt{ \blue{ \: Value  \:  \:  of \:  \:  x = 50 \degree \: }}}}

Attachments:
Answered by khushpreet50
4

Answer:

hloo user

here is your answer

110+y =180(linear pair)

y = 180-110

=70

z+ 120= 180(linear pair)

z=180-120

=60

Now in triangle X+ y+ z = 180( angle sum property)

X+70+60=180

X+130=180

X=180-130

=50

Hope that it's helpful to you

Attachments:
Similar questions