Math, asked by XxMissInnocentxX, 2 months ago


 \huge \tt \pink{Question - }
Given 15 cot A = 8, find sin A and sec A.

★Don't Spam
★No Copied Answer​

Answers

Answered by varadad25
5

Answer:

\displaystyle{\boxed{\red{\sf\:\sin\:A\:=\:\dfrac{15}{17}}}}

\displaystyle{\boxed{\red{\sf\:\sec\:A\:=\:\dfrac{17}{8}}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:15\:\cot\:A\:=\:8}

We have to find \displaystyle{\sf\:\sin\:A\:\&\:\sec\:A}

Now,

\displaystyle{\sf\:15\:\cot\:A\:=\:8}

\displaystyle{\implies\sf\:\cot\:A\:=\:\dfrac{8}{15}}

\displaystyle{\implies\sf\:\sqrt{cosec^2\:A\:-\:1}\:=\:\dfrac{8}{15}\:\quad\:-\:-\:-\:[\:\because\:cosec^2\:A\:=\:1\:+\:\cot^2\:A\:]}

\displaystyle{\implies\sf\:cosec^2\:A\:-\:1\:=\:\left(\:\dfrac{8}{15}\:\right)^2\:\quad\:-\:-\:-\:[\:Squaring\:both\:sides\:]}

\displaystyle{\implies\sf\:cosec^2\:A\:-\:1\:=\:\dfrac{8^2}{15^2}}

\displaystyle{\implies\sf\:cosec^2\:A\:-\:1\:=\:\dfrac{64}{225}}

\displaystyle{\implies\sf\:cosec^2\:A\:=\:\dfrac{64}{225}\:+\:1}

\displaystyle{\implies\sf\:cosec^2\:A\:=\:\dfrac{64\:+\:225}{225}}

\displaystyle{\implies\sf\:cosec^2\:A\:=\:\dfrac{289}{225}}

\displaystyle{\implies\sf\:cosec\:A\:=\:\sqrt{\dfrac{289}{225}}\:\quad\:-\:-\:-\:[\:Taking\:square\:roots\:]}

\displaystyle{\implies\sf\:\dfrac{1}{\sin\:A}\:=\:\sqrt{\dfrac{17\:\times\:17}{15\:\times\:15}}\:\quad\:-\:-\:-\:\left[\:\because\:cosec\:A\:=\:\dfrac{1}{\sin\:A}\:\right]}

\displaystyle{\implies\sf\:\dfrac{1}{\sin\:A}\:=\:\dfrac{17}{15}}

\displaystyle{\implies\underline{\boxed{\red{\sf\:\sin\:A\:=\:\dfrac{15}{17}}}}}

Now,

\displaystyle{\pink{\sf\:\sec\:A\:=\:\dfrac{1}{\cos\:A}}\sf\:\quad\:-\:-\:-\:[\:Trigonometric\:identity\:]}

\displaystyle{\implies\sf\:\sec\:A\:=\:\dfrac{1}{\sqrt{1\:-\:\sin^2\:A}}\:\quad\:-\:-\:-\:[\:\because\:\sin^2\:A\:+\:\cos^2\:A\:=\:1\:]}

\displaystyle{\implies\sf\:\sec\:A\:=\:\dfrac{1}{\sqrt{1\:-\:\left(\:\dfrac{15}{17}\:\right)^2}}}

\displaystyle{\implies\sf\:\sec\:A\:=\:\dfrac{1}{\sqrt{1\:-\:\dfrac{225}{289}}}}

\displaystyle{\implies\sf\:\sec\:A\:=\:\dfrac{1}{\sqrt{\dfrac{289\:-\:225}{289}}}}

\displaystyle{\implies\sf\:\sec\:A\:=\:\dfrac{1}{\sqrt{\dfrac{64}{289}}}}

\displaystyle{\implies\sf\:\sec\:A\:=\:\dfrac{1}{\dfrac{8}{17}}}

\displaystyle{\implies\underline{\boxed{\red{\sf\:\sec\:A\:=\:\dfrac{17}{8}}}}}

Similar questions