Math, asked by amitkumar44481, 10 months ago

\huge\underline\mathsf\purple{Question}

Given:-

Prove:-

\Rightarrow\Huge\boxed {LHS} = {RHS}

Attachments:

Answers

Answered by Anonymous
11

Answer :

Note: Check this attachment!

Hence:

\implies \sf{- cot \: x =  - cot \: x}

\implies \sf{L. H. S. = R. H. S.}

Attachments:
Answered by Anonymous
12

→ Take L.H.S

\dfrac{1}{\csc x+\cot x}-\dfrac{1}{\sin x}

=\dfrac{c s c^{2} x-c o t^{2} x}{\csc x+\cot x}-\dfrac{1}{\sin x}

=\dfrac{(\csc x-\cot x)(\csc x+\cot x)}{\csc x+\cot x}-\dfrac{1}{\sin x}

=\bf{csc x-cot x-csc x}

=\bf{-cotx}

→ Take R.H.S

\dfrac{1}{\sin x}-\dfrac{1}{\csc x-\cot x}

\dfrac{1}{\sin x}-\dfrac{\csc ^{2} x-\cot ^{2} x}{\csc x-\cot x}

\dfrac{1}{\sin x}-\dfrac{(\csc x-\cot x)(\csc x+\cot x)}{\cos x-\cot x}

=\bf{csc x-(csc x+cot x)}

=\bf{-cotx}

L.H.S = R.H.S

Hence Proved

Regards :)

Similar questions