Math, asked by Anonymous, 11 months ago



\huge{\underline{\underline{\red{\mathfrak{Question :}}}}}

Derivative of the function using first principle :

³√Sinx ​

Attachments:

Answers

Answered by HarishAS
4

\tt f(x) = \sqrt[3]{\sin \tt x} \\ \\ \implies f(x+h) = \sqrt[3]{\sin\tt (x+h) } \\ \\ We\ know\ that\ :\\ \\ \dfrac{d}{dx}\big(f(x)\big) =  \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h} \\ \\ \\ \implies \dfrac{\sqrt[3]{\sin\tt (x+h)}-\sqrt[3]{\sin\tt (x) } }{h} \\ \\ We\ know\ that: a-b=\dfrac{a^3-b^3}{a^2+b^2+ab}

\tt \implies  \lim_{h \to 0} \dfrac{\sqrt[3]{\sin\tt (x+h)}-\sqrt[3]{\sin\tt (x) } }{h}\\ \\ \implies \lim_{h \to 0} \dfrac{\Big(\sqrt[3]{\sin\tt (x+h)}\Big)^3-\Big(\sqrt[3]{\sin\tt (x) }\Big)^3 }{h\times \Big(\sin^\frac{2}{3}\tt(x+h)+\sin^\frac{1}{3}\tt(x)\cdot\sin^\frac{1}{3}\tt(x+h)+\sin^\frac{2}{3}\tt(x)\Big)}

\tt \lim_{h \to 0} \dfrac{\sin\tt(x+h)-\sin\tt x}{h} \times \dfrac{1 }{h\times \Big(\sin^\frac{2}{3}\tt(x+h)+\sin^\frac{1}{3}\tt(x)\cdot\sin^\frac{1}{3}\tt(x+h)+\sin^\frac{2}{3}\tt(x)\Big)} \\ \\ \implies  \lim_{h \to 0} \dfrac{2\cos\tt \Big(x+\dfrac{h}{2}\Big)}{2}\times \dfrac{1 }{h\times \Big(\sin^\frac{2}{3}\tt(x+h)+\sin^\frac{1}{3}\tt(x)\cdot\sin^\frac{1}{3}\tt(x+h)+\sin^\frac{2}{3}\tt(x)\Big)}

\implies \tt \cos x \times \dfrac{1 }{h\times \Big(\sin^\frac{2}{3}\tt(x)+\sin^\frac{1}{3}\tt(x)\cdot\sin^\frac{1}{3}\tt(x)+\sin^\frac{2}{3}\tt(x)\Big)} \\ \\ \implies \boxed{\tt\dfrac{\cos x}{3.sin^\frac{2}{3}x}}

Hope this answer helps.

Answered by Sharad001
55

Question :-

Find the derivative of ³√Sinx

Answer :-

\to  \boxed{\sf \frac{dy}{dx} =  \frac{ \cos x}{3 \:  {( \sin x)}^{ \frac{2}{3} } }  } \:

Solution :-

Let ,

 \to \sf \:  y =  \sqrt[ 3]{ \sin x}  \\  \\  \bf \: we \: can \: write \: it \:  \\  \\  \to \sf \: y \:  =  {( \sin x)}^{ \frac{1}{3} }  \\  \\  \bf \: taking \:  \log \: on \: both \: sides \:  \\  \\  \to \sf \log  y =  \log  {( \sin x)}^{  \frac{1}{3}  }  \\  \\  \sf \because  \log {m}^{n}  = n \log m \\  \\  \therefore \\   \to \sf \log y =  \frac{1}{3}  \log \sin x \\  \\ \sf differentiate \: with \: respect \: to \: x \\  \\  \to \sf \frac{1}{y}  \:  \frac{dy}{dx}  =  \frac{1}{3}  \frac{1}{ \sin x}  \:  \frac{d}{dx}  \sin x \\  \\  \to \sf \frac{1}{y} \:  \frac{dy}{dx}   =  \frac{ \cos x}{3 \sin x}  \\  \\  \to \sf \frac{dy}{dx} = y \bigg(  \frac{ \cos x}{3 \sin x}  \bigg) \\  \\  \because \sf \: y =  {( \sin x)}^{ \frac{1}{3} }  \\  \therefore \:  \\  \:  \to \sf \frac{dy}{dx}  =   {( \sin x)}^{ \frac{1}{3} } \bigg( \frac{ \cos x}{3 \sin x}  \bigg) \\  \\  \to \sf  \frac{dy}{dx}  =  \frac{ \cos x}{3 \:  { \sin x}^{(1 -  \frac{1}{3} )} }  \\  \:  \\  \to  \boxed{\sf \frac{dy}{dx} =  \frac{ \cos x}{3 \:  {( \sin x)}^{ \frac{2}{3} } }  }

Another method :-

Let ,

 \to \sf \: y =   \sqrt[3]{ \sin x}  \\  \\  \:  \to \sf y =  {( \sin x)}^{ \frac{1}{3} }  \\  \\  \sf differentiate \: with \: respect \: to \: x \\  \:  \\  \to \sf \frac{dy}{dx}  =  \frac{1}{3}  { \sin x}^{ (\frac{1}{3}  - 1)}  \:  \frac{d}{dx}  \sin x \\  \\  \to \sf  \frac{dy}{dx}  =  \frac{1}{3}  { \sin}^{( -  \frac{2}{3} ) } \:   \cos  x \\  \\   \to \boxed{ \sf  \frac{dy}{dx}   =  \frac{ \cos x}{3 { \sin}^{ (\frac{2}{3}) }} }

Hope it help you .

Similar questions