Math, asked by SƬᏗᏒᏇᏗƦƦᎥᎧƦ, 4 months ago


If  \: cos  \: A \:  =  \:  \dfrac{1}{2}  \: and \: sin \: B \:   =  \:  \dfrac{1}{ \sqrt{2} }  \: ,find \: the \: value \: of \: : \\  \frac{tan \:A \:  -  \: tan \:B}{1 + tan \:A \: tan \: B \: .}  \\ Here \: angles \: A  \: and \:  B  \: are \: from \: same \: triange

Answers

Answered by BadCaption01
20

Given that,

 \sf \:   tan( \dfrac{ \theta}{2} )  =  \sqrt{ \dfrac{a - b}{a + b} }  tan( \dfrac{ \phi}{2} )

To Prove :

 \sf \: cos \:  \theta =  \dfrac{acos  \: \phi + b}{a + bcos  \: \phi}

We Know that,

 \sf \: cos2x =  \dfrac{1 - tan {}^{2}x }{1 + tan {}^{2}x }

Similarly,

\longrightarrow \sf cos \ \theta = \dfrac{1 - tan^2 \frac{\theta}{2}}{1 + tan^2 \frac{\theta}{2}}

Then,

 \sf \: cos \ \theta =  \dfrac{1  - ( \sqrt{ \dfrac{a - b}{a + b} } \: tan  \frac{ \phi}{2}  ) {}^{2} }{1 + ( \sqrt{ \dfrac{a - b}{a + b} } \: tan \frac{ \phi}{2}) {}^{2}   }  \\  \\  \\  \longrightarrow \:  \sf \: cos \:  \theta =    \frac{1 -  \bigg( \dfrac{a - b}{a + b} \times  \dfrac{ {sin}^{2} \frac{ \phi}{2}  }{ {cos}^{2} \frac{ \phi}{2}  } \bigg)}{1 +  \bigg( \dfrac{a - b}{a + b} \times  \dfrac{ {sin}^{2} \frac{ \phi}{2}  }{ {cos}^{2} \frac{ \phi}{2}  }  \bigg) }  \\  \\  \\  \longrightarrow \:  \sf \: cos \:  \theta =  \dfrac{(a + b) {cos}^{2}  \frac{ \phi}{2} - (a - b) {sin}^{2} \frac{ \phi}{2}   }{(a  +  b) {cos}^{2}  \frac{ \phi}{2}  + (a  -  b) {sin}^{2}  \frac{ \phi}{2}  }  \\  \\   \\  \longrightarrow \:  \sf \: cos \:  \theta =  \dfrac{a(cos {}^{2} \frac{ \phi}{2} -  {sin}^{2} \frac{  \phi}{2}) + b(cos {}^{2}   \frac{ \phi}{2}  +  {sin}^{2} \frac{ \phi}{2} )    }{a(cos {}^{2}  \frac{ \phi}{2} +  {sin}^{2}  \frac{ \phi}{2}  ) + b(cos {}^{2}  \frac{ \phi}{2}  -  {sin}^{2}    \frac{ \phi}{2} ) }  \\  \\  \\   \longrightarrow \:  \sf \: cos \:  \theta =  \frac{acos  \: \phi + b}{a + bcos \:  \phi}

\bf\blue{ Hence~proved} \\

\bf\green{ Identities~used} \\

cos²∅ - sin²∅ = cos2∅

sin²∅ + cos²∅ = 1

Answered by mathdude500
12

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{cosA = \dfrac{1}{2} } \\ &\sf{sinB = \dfrac{1}{ \sqrt{2} } } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{\dfrac{tanA - tanB}{1 + tanAtanB} }  \end{cases}\end{gathered}\end{gathered}

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

\tt \:  \longrightarrow \: cosA = \dfrac{1}{2}

\tt \:  \longrightarrow \: cosA = cos60 \degree

\tt\implies \:A \:  =  \: 60 \degree

\tt \:  \longrightarrow \: sinB = \dfrac{1}{ \sqrt{2} }

\tt \:  \longrightarrow \: sinB = sin45 \degree

\tt\implies \:B \:  =  \: 45 \degree

\begin{gathered}\begin{gathered}\bf So = \begin{cases} &\sf{A = 60 \degree} \\ &\sf{B = 45 \degree} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\bf\red{Now, \: consider}\end{gathered}

\tt \:  \longrightarrow \: \dfrac{tanA - tanB}{1 + tanAtanB}

\tt \:  \longrightarrow \:  = \dfrac{tan60 \degree - tan45 \degree}{1 + tan60 \degree \: tan45 \degree}

\tt \:  \longrightarrow \:  = \dfrac{ \sqrt{3} - 1 }{1 +  \sqrt{3} \times 1 }

\tt \:  \longrightarrow \:  = \dfrac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 }  \times \dfrac{ \sqrt{3}  - 1}{ \sqrt{3} - 1 }

\tt \:  \longrightarrow \:  = \dfrac{ {( \sqrt{3}  - 1)}^{2} }{ {( \sqrt{3} )}^{2} -  {(1)}^{2}  }

\tt \:  \longrightarrow \:  = \dfrac{3 + 1 - 2 \sqrt{3} }{3 - 1}

\tt \:  \longrightarrow \:  = \dfrac{4 - 2 \sqrt{3} }{2}

\tt \:  \longrightarrow \:  = \dfrac{2(2 -  \sqrt{3} )}{2}

\tt \:  \longrightarrow \:  = 2 -  \sqrt{ 3}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\bf \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Explore \:  more } 

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions