Math, asked by kaushik05, 1 year ago


 \int \:  \frac{1}{ {x}^{ \frac{1}{2}  }+ {x}^{ \frac{1}{3}  } } dx \\  \\
Solve this ....​

Answers

Answered by nirman95
41

Answer:

 \int  \dfrac{1}{ {x}^{ \frac{1}{2} } +  {x}^{ \frac{1}{3} }  } dx

Let \: x =  {t}^{6 }  \\  =  > dx = 6 {t}^{5} dt

Putting the value :

 =   \int \dfrac{6 {t}^{5} }{ {t}^{3} +  {t}^{2}  } dt

 =   6 \int \dfrac{ {t}^{5} }{ {t}^{2}(1 + t) } dt

 =   6 \int  \dfrac{ {t}^{3} }{1 + t} dt

 =  6 \int  \dfrac{ ( {t}^{3}  + 1) - 1 }{1 + t} dt

 =   6 \int ( {t}^{2}   - t + 1 -  \dfrac{1}{1 + t} )dt

 =   6 \{ \frac{ {t}^{3} }{3}  -  \frac{ {t}^{2} }{2}  + t -  log(1 + t) \} + c

Reversing the value in terms of x :

 = 6 \{ \frac{ {x}^{ \frac{1}{2} } }{3} -  \frac{ {x}^{ \frac{1}{3} } }{2}   +  {x}^{ \frac{1}{6} }  -  log( {x}^{ \frac{1}{6} }  + 1)  \} + c

So final answer :

  \boxed{ \red{ \sf{ \bold{6 \{ \frac{ {x}^{ \frac{1}{2} } }{3} -  \frac{ {x}^{ \frac{1}{3} } }{2}   +  {x}^{ \frac{1}{6} }  -  log( {x}^{ \frac{1}{6} }  + 1)  \} + c}}}}

The basic trick for the substitution :

  • It has been given x^½ and x^⅓ . So we are taking t^6 because the LCM of 2 and 3 is 6

Additional Information:

  • We have performed Chain rule in this sum , such that we try to express dx in terms of dt.
Answered by rajdheerajcreddy
2

Answer is given in the pic.

Attachments:
Similar questions