Math, asked by Vinodboliwar6722, 1 year ago

[tex] \int\limits^4_1 (x²+1/x)⁻¹=.....,Select correct option from the given options.(a) log(17/2)(b) 1/2 log(17/2)(c) 2 log(17)(d) log(17) [\tex]

Answers

Answered by jitumahi89
0

Answer:

The correct option is (c).

i.e;

\dfrac{1}{2}log(\dfrac{17}{2}).

Step-by-step explanation:

Given equation is:

\displaystyle\int _1^4(\dfrac{x^2+1}{x})^{-1}dx

We may write the equation as:

\displaystyle\int _1^4(\dfrac{x}{x^2+1})dx

Now substituting:

x^2+1=z

2x\,dx=dz\\x\,dx=\dfrac{dz}{2}

Substituting for the value of limits:

Lower limit:

When x=1

z=1+1\\z=2

Upper limits:

When x=4

z=(4)^2+1\\z=17

Hence substituting the values of limits:

=\displaystyle\int _2^{17}\dfrac{1}{z}\cdot \dfrac{dz}{2}

=\dfrac{1}{2}[log(z)]_2^{17}

=\dfrac{1}{2}[log(17)-log(2)]

=\dfrac{1}{2}log(\dfrac{17}{2})

Similar questions