Math, asked by abhaykakkattil71, 2 months ago

\int\limits^\pi _0 {sinx} \, dx

Pls find the explanation for the answer of this question..
No scam pls...

Answers

Answered by Anonymous
301

Topic :- Basic Maths

\maltese\:\underline{\textsf{\textbf{AnsWer :}}}\:\maltese

Definite Integral

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\longrightarrow\:\:\sf\displaystyle \sf \int\limits_{0}^{\pi}  \sin(x)  \, dx  \\

\longrightarrow\:\:\sf\displaystyle \sf \Bigg[ -  \cos(x) \Bigg]^{\pi}_{0} \\

\longrightarrow\:\:\sf\displaystyle \sf \Bigg[ -  \cos(\pi) -  \bigg( -  \cos(0)  \bigg) \Bigg]\\

\longrightarrow\:\:\sf\displaystyle \sf \Bigg[ -  \cos(\pi)  +   \cos(0)  \Bigg]\\

\longrightarrow\:\:\sf\displaystyle \sf \Bigg[ -  \cos(180^{\circ})  +   \cos(0)  \Bigg]\\

\longrightarrow\:\:\sf\displaystyle \sf-  ( - 1)  +   1\\

\longrightarrow\:\:\sf\displaystyle \sf 1  +   1\\

\longrightarrow\: \: \underline{ \boxed{ \sf\displaystyle \sf 2}}\\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\footnotesize \bullet\displaystyle \sf \int\limits  { x}^{n} \, dx =\frac{ {x}^{n + 1} }{n + 1}  + c  \\\\\footnotesize\bullet\displaystyle \sf \int\limits  {e}^{x} \, dx =  {e}^{x} + c \\\\\footnotesize\bullet\displaystyle \sf \int\limits   \frac{1}{ x } \, dx =  ln(x)  + c \\  \\ \footnotesize\bullet\displaystyle \sf \int\limits \sin(x) \, dx =  -  \cos(x)  + c \\  \\ \footnotesize\bullet\displaystyle \sf \int\limits \cos(x) \, dx =  \sin(x)  + c \\  \\ \footnotesize\bullet\displaystyle \sf \int\limits \sec^{2} (x) \, dx =  \tan(x)  + c

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\boxed{\boxed{\begin{minipage}{4cm}\displaystyle\circ\sf\:\int{1\:dx}=x+c\\\\\circ\sf\:\int{a\:dx}=ax+c\\\\\circ\sf\:\int{x^n\:dx}=\dfrac{x^{n+1}}{n+1}+c\\\\\circ\sf\:\int{sin\:x\:dx}=-cos\:x+c\\\\\circ\sf\:\int{cos\:x\:dx}=sin\:x+c\\\\\circ\sf\:\int{sec^2x\:dx}=tan\:x+c\\\\\circ\sf\:\int{e^x\:dx}=e^x+c\end{minipage}}}


Anonymous: Perfect!
Anonymous: Thankieesss
BrainlyPopularman: Nice
Anonymous: Thanks! T.T
Answered by amitnrw
165

Given :   \int\limits^\pi_0 {\sin x} \, dx

To Find :  Solve

Solution:

let say

 y=\int\limits^\pi_0 {\sin x} \, dx

on integration

 y=\left[ {-\cos x} \right]^\pi_0

=> y  = - ( cosπ  - cos0 )

=> y =  - (-1 -  1)

=> y = 2

Learn More

integral of 6x-5 root of 6-2x^2+xdx evaluate - Brainly.in

brainly.in/question/15708198

integrate x³-1/x³+x dx - Brainly.in

brainly.in/question/3017912

Integrate dx/ 3sin^2x+5cos^2x - Brainly.in

brainly.in/question/9262036

Similar questions