Math, asked by Anonymous, 8 hours ago

 \large \sf \frac{2 \sqrt{2} }{9801}  \sum \limits_{n = 0}^{ \infty}  \frac{(4n)!(1103 + 26390n)}{(n!) {}^{4} {396}^{4n}  }  =  \frac{1}{\pi}

Answers

Answered by tname3345
9

Step-by-step explanation:

given :

  • 1/π = 2 √2 /9801 ∑∞k=0 (4 k ) (1103) + (26390 k) / ( k) 396

solution :

  • please check the full attached file
Attachments:
Answered by OoAryanKingoO78
4

Answer:

\huge \dag \sf{Question}

\rm \red{\large \sf \frac{2 \sqrt{2} }{9801} \sum \limits_{n = 0}^{ \infty} \frac{(4n)!(1103 + 26390n)}{(n!) {}^{4} {396}^{4n} } = \frac{1}{\pi}}

Answer :-

All answers Refers← to the attachment

____________________

Attachments:
Similar questions