Answers
Step-by-step explanation:
- Given,2-cos²θ=3sin θ cos θ Dividing both sides by cos²θ, we get
2 sec² θ-1=3 tan θ
⇒2(1+tan²θ)-1=tanθ
⇒2+2tan²θ-1=3tanθ
⇒2tan²θ-3tan θ(tan θ+1)=0
⇒2tan²θ-2tan θ-tan θ+1=0
⇒2tan θ(tan θ-1)-(tan θ-1)=0
⇒(2tan θ-1) (tan θ-1)=0
Hope that helps u❤
EXPLANATION.
⇒ 2 - cos²θ = 3sinθcosθ.
⇒ sinθ ≠ cosθ.
As we know that,
Divide both equation by cos²θ, we get.
⇒ [2 - cos²θ/cos²θ] = [3sinθcosθ/cos²θ].
⇒ [2/cos²θ - cos²θ/cos²θ] = [3sinθ/cosθ].
⇒ [2sec²θ - 1] = [3 tanθ].
⇒ 2sec²θ - 1 = 3tanθ.
As we know that,
Formula of :
⇒ 1 + tan²θ = sec²θ.
Using this formula in the equation, we get.
⇒ 2(1 + tan²θ) - 1 = 3tanθ.
⇒ 2 + 2tan²θ - 1 = 3tanθ.
⇒ 1 + 2tan²θ = 3tanθ.
⇒ 2tan²θ - 3tanθ + 1 = 0.
Factorizes the equation into middle term splits, we get.
⇒ 2tan²θ - 2tanθ - tanθ + 1 = 0.
⇒ 2tanθ(tanθ - 1) - 1(tanθ - 1) = 0.
⇒ (2tanθ - 1)(tanθ - 1) = 0.
⇒ tanθ = 1/2 and tanθ = 1.