Math, asked by ItzShizuka50, 9 days ago


 \mathbb \red{QUESTION : }
Find the compound interest on Rs.64000 for per 1 year at the rate of 10% p.a. compounded quarterly.
____________________________
☆Best Answer::
☆Good explanation::​

Answers

Answered by Anonymous
48

 \large{\underline{\underline{\maltese{\red{\pmb{\sf{ \; Given \; :- }}}}}}}

  • Principal = ₹ 64000
  • Rate = 10 %
  • Time = 1 year
  • Compound = Quarterly

 \\ \rule{200pt}{3pt}

 \large{\underline{\underline{\maltese{\color{maroon}{\pmb{\sf{ \; To \; Find \; :- }}}}}}}

  • Compound Interest = ?

 \\ \rule{200pt}{3pt}

 \large{\underline{\underline{\maltese{\green{\pmb{\sf{ \; Solution \; :- }}}}}}}

~ Formula Used :

  • Amount :

 {\color{cyan}{\bigstar}} \; {\underline{\boxed{\red{\sf{ A = P \bigg[ 1 + \dfrac{R}{400} \bigg]^{4n} }}}}}

  • Compound Interest :

 {\color{cyan}{\bigstar}} \; {\underline{\boxed{\red{\sf{ C.I = Amount - Principal }}}}}

Where :

  • A = Amount
  • P = Principal
  • R = Rate
  • n = Time
  • C.I = Compound Interest

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Amount :

 \begin{gathered} \dashrightarrow \qquad{\sf { A = P \bigg[ 1 + \dfrac{R}{400} \bigg]^{4n} }} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \qquad{\sf { A = 64000 \bigg[ 1 + \dfrac{10}{400} \bigg]^{4 \times 1} }} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \qquad{\sf { A = 64000 \bigg[ 1 + \dfrac{10}{400} \bigg]^{4} }} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \qquad{\sf { A = 64000 \bigg[ 1 + \cancel\dfrac{10}{400} \bigg]^{4} }} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \qquad{\sf { A = 64000 \bigg[ 1 + \cancel\dfrac{5}{200} \bigg]^{4} }} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \qquad{\sf { A = 64000 \bigg[ 1 + \cancel\dfrac{2.5}{100} \bigg]^{4} }} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \qquad{\sf { A = 64000 \bigg[ 1 + 0.025 \bigg]^{4} }} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \qquad{\sf { A = 64000 \bigg[ 1.025 \bigg]^{4} }} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \qquad{\sf { A = 64000 \times 1.025 \times 1.025 \times 1.025 \times 1.025 }} \\ \end{gathered}

 \begin{gathered} \dashrightarrow \qquad{\sf { A = 64000 \times 1.103812890625 }} \\ \end{gathered}

 \begin{gathered} \dashrightarrow {\qquad{\orange{\sf { Amount = ₹ \; 70644.025 }}}} \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Compound Interest :

 \begin{gathered} :\implies \qquad{\sf { Compound \; Interest = Amount - Principal }} \\ \end{gathered}

 \begin{gathered} :\implies \qquad{\sf { Compound \; Interest = 70644.025 - 64000 }} \\ \end{gathered}

 \begin{gathered} :\implies {\qquad{\purple{\sf { Compound \; Interest = ₹ \; 6644.025 }}}} \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

~ Therefore :

❝ Compound Interest on this sum of money is ₹ 6644.025 . ❞

 \\ {\underline{\rule{300pt}{9pt}}}

 {\red{♪}}

Answered by SatisfiedSoul
107

 \purple{ \bigstar} \:  \bf\pink{\underline{\underline{Question:}}}

Find the compound interest on Rs.64000 for per 1 year at the rate of 10% p.a. compounded quarterly.

___________________________

\purple{ \bigstar} \:  \bf\blue{\underline{\underline{Given:}}}

  • Principal = ₹64000
  • Rate = 10%
  • Time = 1 year per annum

___________________________

\purple{ \bigstar} \:  \bf\green{\underline{\underline{To \: Find:}}}

  • Compound interest on ₹64000 = ?

___________________________

\purple{ \bigstar} \:  \bf\red{\underline{\underline{Solution:}}}

 \sf\pink{❒ } \:    \underline{ \bold{Concept } \: Used :}

  • If P is the Principal then the amount after T years at R% ( rate of compound interest) and n yearly terms will be  \sf{P × (1 +  \frac{r}{100n} ) {}^{tn} }

ㅤㅤㅤ____________________________

\sf\green{❒ } \:    \underline{ Calculating  \: the \:   \bold{interest}  \: compounded  \: quarterly \:  in  \: 3 \: months :}

 \:  \:  \:  \:  \:  \:  \:  \: ⟼  \:  \:  \:  \: \sf{ n =  \cancel \frac{12 }{3} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf {⟼ \:  \:  \:  \:  \:  n = 4 }

ㅤㅤㅤ____________________________

\sf\blue{❒} \:    \underline{ Finding \:  the  \: \bold{  Amount } :}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{{ ⟼ \:  \:  \:  \:  \:  \:  \: 64000 \times [{\frac{1 + 10}{(100 \times 4)}] {}^{1 \times 4} }  }{ \: }}

\sf{{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ⟼  \:  \:  \:  \:  \: 64000 \times ( \frac{41}{40} ) {}^{4}  }{ \: }}

\sf{{ \:  \:  \:    \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: ⟼  \:  \:  \:  \:  \:  \:  \:  ₹70644.025≈ \green{₹70644} }{ \: }}

ㅤㅤㅤ____________________________

\sf\red{❒} \:    \underline{Calculating \:  the \:   \bold{Compound  \: Interest } :}

 \: \:\sf\orange{\underbrace{Compound  \: interest = Amount - Principal}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{➺} \:  \: \:   \:  \:  \sf{₹(70644 - 64000)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \:   \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{➺} \:  \: \:  \:  \:   \:  \:  \sf \pink{₹6644}

ㅤㅤㅤ____________________________

\sf\orange{❒} \:  \:    \underline{Final \:   \bold{Answer }:}

❛ The required compound interest is ₹6644. ❜

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions