Math, asked by Itsprachi, 4 months ago

 \pink{\boxed{\bf Question :}}

m = cosec theta + cot theta show that m square - 1/m square + 1 = cos theta.

No spamming please

Answers

Answered by MoodyCloud
153

Given :-

 \sf m = cosec \: \theta + cot \: \theta

To show :-

 \sf \dfrac{m^{2} - 1}{m^{2} + 1} = cos \: \theta

Prove :-

 \sf We \: have :

 \sf \dfrac{m^{2} - 1}{m^{2} + 1} = cos \: \theta \\ \\

 \underline{\sf Take \: L.H.S :}

 \implies \sf \dfrac{m^{2} - 1}{m^{2} + 1} \\ \\

  •  \sf Put \: m = cosec \: \theta + cot \: \theta

 \implies \sf  \dfrac{(cosec \: \theta + cot \: \theta ) ^{2} - 1}{(cosec \: \theta + cot \: \theta)^{2} - 1} \\ \\

  •  \sf cosec^{2} \: \theta - cot^{2} \: \theta = 1

 \implies \sf \dfrac{(cosec \: \theta + cot \: \theta)^{2} - (cosec^{2} \: \theta - cot^{2} \: \theta)}{(cosec \: \theta + cot \: \theta)^{2} + (cosec^{2} \: \theta - cot^{2} \: \theta)} \\ \\

  • Use a² - b² = (a + b)(a - b) in numerator and denominator.

 \implies \sf \dfrac{(cosec \: \theta + cot \: \theta)^{2} - \bigg( (cosec \: \theta + cot \: \theta)( cosec \: \theta - cot \: \theta)\bigg)}{(cosec \: \theta + cot \: \theta)^{2} + \bigg( (cosec \: \theta + cot \: \theta)(cosec \: \theta - cot \: \theta) \bigg)} \\ \\

  • Take cosec  \theta + cot  \theta common from numerator and denominator.

 \implies \sf \dfrac{\cancel{(cosec \: \theta + cot \: \theta)} \times  \bigg( (cosec \: \theta + cot \: \theta) - ( cosec \: \theta - cot \: \theta) \bigg)}{\cancel{(cosec \: \theta + cot \: \theta)} \times \bigg( (cosec \: \theta + cot \: \theta) + (cosec \: \theta - cot \: \theta)\bigg)} \\ \\

 \implies \sf \dfrac{\cancel{cosec \: \theta} + cot \: \theta - \cancel{ cosec \: \theta} + cot \: \theta}{cosec \: \theta + \cancel{ cot \: \theta} + cosec \: \theta - \cancel{ cot \: \theta}} \\ \\

 \implies \sf  \dfrac{\cancel{2} \: cot \: \theta}{\cancel{2} \: cosec \: \theta} \\ \\

  • cot  \theta = cos  \theta /sin  \theta and cosec  \theta = 1/sin  \theta

 \implies \sf \dfrac{\dfrac{cos \: \theta}{\cancel{sin \: \theta}}}{\dfrac{1}{\cancel{sin \: \theta}}} \\ \\

 \implies \sf cos \: \theta \\ \\

 \implies \sf R.H.S \\ \\

Hence, Proved !!

Answered by MissBewitch
1

Answer:

Given :-

• \sf m = cosec \: \theta + cot \: \thetam=cosecθ+cotθ

To show :-

• \sf \dfrac{m^{2} - 1}{m^{2} + 1} = cos \: \theta

m

2

+1

m

2

−1

=cosθ

Prove :-

\sf We \: have :Wehave:

• \begin{gathered} \sf \dfrac{m^{2} - 1}{m^{2} + 1} = cos \: \theta \\ \\ \end{gathered}

m

2

+1

m

2

−1

=cosθ

\underline{\sf Take \: L.H.S :}

TakeL.H.S:

\begin{gathered} \implies \sf \dfrac{m^{2} - 1}{m^{2} + 1} \\ \\ \end{gathered}

m

2

+1

m

2

−1

\sf Put \: m = cosec \: \theta + cot \: \thetaPutm=cosecθ+cotθ

\begin{gathered} \implies \sf \dfrac{(cosec \: \theta + cot \: \theta ) ^{2} - 1}{(cosec \: \theta + cot \: \theta)^{2} - 1} \\ \\ \end{gathered}

(cosecθ+cotθ)

2

−1

(cosecθ+cotθ)

2

−1

\sf cosec^{2} \: \theta - cot^{2} \: \theta = 1cosec

2

θ−cot

2

θ=1

\begin{gathered} \implies \sf \dfrac{(cosec \: \theta + cot \: \theta)^{2} - (cosec^{2} \: \theta - cot^{2} \: \theta)}{(cosec \: \theta + cot \: \theta)^{2} + (cosec^{2} \: \theta - cot^{2} \: \theta)} \\ \\ \end{gathered}

(cosecθ+cotθ)

2

+(cosec

2

θ−cot

2

θ)

(cosecθ+cotθ)

2

−(cosec

2

θ−cot

2

θ)

Use a² - b² = (a + b)(a - b) in numerator and denominator.

\begin{gathered} \implies \sf \dfrac{(cosec \: \theta + cot \: \theta)^{2} - \bigg( (cosec \: \theta + cot \: \theta)( cosec \: \theta - cot \: \theta)\bigg)}{(cosec \: \theta + cot \: \theta)^{2} + \bigg( (cosec \: \theta + cot \: \theta)(cosec \: \theta - cot \: \theta) \bigg)} \\ \\ \end{gathered}

(cosecθ+cotθ)

2

+((cosecθ+cotθ)(cosecθ−cotθ))

(cosecθ+cotθ)

2

−((cosecθ+cotθ)(cosecθ−cotθ))

Take cosec \thetaθ + cot \thetaθ common from numerator and denominator.

\begin{gathered} \implies \sf \dfrac{\cancel{(cosec \: \theta + cot \: \theta)} \times \bigg( (cosec \: \theta + cot \: \theta) - ( cosec \: \theta - cot \: \theta) \bigg)}{\cancel{(cosec \: \theta + cot \: \theta)} \times \bigg( (cosec \: \theta + cot \: \theta) + (cosec \: \theta - cot \: \theta)\bigg)} \\ \\ \end{gathered}

(cosecθ+cotθ)

×((cosecθ+cotθ)+(cosecθ−cotθ))

(cosecθ+cotθ)

×((cosecθ+cotθ)−(cosecθ−cotθ))

\begin{gathered} \implies \sf \dfrac{\cancel{cosec \: \theta} + cot \: \theta - \cancel{ cosec \: \theta} + cot \: \theta}{cosec \: \theta + \cancel{ cot \: \theta} + cosec \: \theta - \cancel{ cot \: \theta}} \\ \\ \end{gathered}

cosecθ+

cotθ

+cosecθ−

cotθ

cosecθ

+cotθ−

cosecθ

+cotθ

\begin{gathered} \implies \sf \dfrac{\cancel{2} \: cot \: \theta}{\cancel{2} \: cosec \: \theta} \\ \\ \end{gathered}

2

cosecθ

2

cotθ

cot \thetaθ = cos \thetaθ /sin \thetaθ and cosec \thetaθ = 1/sin \thetaθ

\begin{gathered} \implies \sf \dfrac{\dfrac{cos \: \theta}{\cancel{sin \: \theta}}}{\dfrac{1}{\cancel{sin \: \theta}}} \\ \\ \end{gathered}

sinθ

1

sinθ

cosθ

\begin{gathered} \implies \sf cos \: \theta \\ \\ \end{gathered}

⟹cosθ

\begin{gathered} \implies \sf R.H.S \\ \\ \end{gathered}

⟹R.H.S

Hence, Proved !!

Similar questions