m = cosec theta + cot theta show that m square - 1/m square + 1 = cos theta.
No spamming please
Answers
Given :-
•
To show :-
•
Prove :-
•
- Use a² - b² = (a + b)(a - b) in numerator and denominator.
- Take cosec + cot common from numerator and denominator.
- cot = cos /sin and cosec = 1/sin
Hence, Proved !!
Answer:
Given :-
• \sf m = cosec \: \theta + cot \: \thetam=cosecθ+cotθ
To show :-
• \sf \dfrac{m^{2} - 1}{m^{2} + 1} = cos \: \theta
m
2
+1
m
2
−1
=cosθ
Prove :-
\sf We \: have :Wehave:
• \begin{gathered} \sf \dfrac{m^{2} - 1}{m^{2} + 1} = cos \: \theta \\ \\ \end{gathered}
m
2
+1
m
2
−1
=cosθ
\underline{\sf Take \: L.H.S :}
TakeL.H.S:
\begin{gathered} \implies \sf \dfrac{m^{2} - 1}{m^{2} + 1} \\ \\ \end{gathered}
⟹
m
2
+1
m
2
−1
\sf Put \: m = cosec \: \theta + cot \: \thetaPutm=cosecθ+cotθ
\begin{gathered} \implies \sf \dfrac{(cosec \: \theta + cot \: \theta ) ^{2} - 1}{(cosec \: \theta + cot \: \theta)^{2} - 1} \\ \\ \end{gathered}
⟹
(cosecθ+cotθ)
2
−1
(cosecθ+cotθ)
2
−1
\sf cosec^{2} \: \theta - cot^{2} \: \theta = 1cosec
2
θ−cot
2
θ=1
\begin{gathered} \implies \sf \dfrac{(cosec \: \theta + cot \: \theta)^{2} - (cosec^{2} \: \theta - cot^{2} \: \theta)}{(cosec \: \theta + cot \: \theta)^{2} + (cosec^{2} \: \theta - cot^{2} \: \theta)} \\ \\ \end{gathered}
⟹
(cosecθ+cotθ)
2
+(cosec
2
θ−cot
2
θ)
(cosecθ+cotθ)
2
−(cosec
2
θ−cot
2
θ)
Use a² - b² = (a + b)(a - b) in numerator and denominator.
\begin{gathered} \implies \sf \dfrac{(cosec \: \theta + cot \: \theta)^{2} - \bigg( (cosec \: \theta + cot \: \theta)( cosec \: \theta - cot \: \theta)\bigg)}{(cosec \: \theta + cot \: \theta)^{2} + \bigg( (cosec \: \theta + cot \: \theta)(cosec \: \theta - cot \: \theta) \bigg)} \\ \\ \end{gathered}
⟹
(cosecθ+cotθ)
2
+((cosecθ+cotθ)(cosecθ−cotθ))
(cosecθ+cotθ)
2
−((cosecθ+cotθ)(cosecθ−cotθ))
Take cosec \thetaθ + cot \thetaθ common from numerator and denominator.
\begin{gathered} \implies \sf \dfrac{\cancel{(cosec \: \theta + cot \: \theta)} \times \bigg( (cosec \: \theta + cot \: \theta) - ( cosec \: \theta - cot \: \theta) \bigg)}{\cancel{(cosec \: \theta + cot \: \theta)} \times \bigg( (cosec \: \theta + cot \: \theta) + (cosec \: \theta - cot \: \theta)\bigg)} \\ \\ \end{gathered}
⟹
(cosecθ+cotθ)
×((cosecθ+cotθ)+(cosecθ−cotθ))
(cosecθ+cotθ)
×((cosecθ+cotθ)−(cosecθ−cotθ))
\begin{gathered} \implies \sf \dfrac{\cancel{cosec \: \theta} + cot \: \theta - \cancel{ cosec \: \theta} + cot \: \theta}{cosec \: \theta + \cancel{ cot \: \theta} + cosec \: \theta - \cancel{ cot \: \theta}} \\ \\ \end{gathered}
⟹
cosecθ+
cotθ
+cosecθ−
cotθ
cosecθ
+cotθ−
cosecθ
+cotθ
\begin{gathered} \implies \sf \dfrac{\cancel{2} \: cot \: \theta}{\cancel{2} \: cosec \: \theta} \\ \\ \end{gathered}
⟹
2
cosecθ
2
cotθ
cot \thetaθ = cos \thetaθ /sin \thetaθ and cosec \thetaθ = 1/sin \thetaθ
\begin{gathered} \implies \sf \dfrac{\dfrac{cos \: \theta}{\cancel{sin \: \theta}}}{\dfrac{1}{\cancel{sin \: \theta}}} \\ \\ \end{gathered}
⟹
sinθ
1
sinθ
cosθ
\begin{gathered} \implies \sf cos \: \theta \\ \\ \end{gathered}
⟹cosθ
\begin{gathered} \implies \sf R.H.S \\ \\ \end{gathered}
⟹R.H.S
Hence, Proved !!