Math, asked by ILLUSTRIOUS27, 3 months ago


 \rm(x^2+5x-2)^2+x^2+5x-7=0 \\  \\  \bf \: find \:  {x}^{2}  + 5x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Answers

Answered by varadad25
6

Answer:

\displaystyle{\boxed{\red{\sf\:x^2\:+\:5x\:=\:\dfrac{3\:\pm\:\sqrt{21}}{2}}}}

Step-by-step-explanation:

The given equation is ( x² + 5x - 2 )² + x² + 5x - 7 = 0.

We have to find the value of x² + 5x.

Now,

( x² + 5x - 2 )² + x² + 5x - 7 = 0

By substituting ( x² + 5x ) = y, we get,

( y - 2 )² + y - 7 = 0

⇒ y² - 2 * y * 2 + 2² + y - 7 = 0 - - - [ ∵ ( a - b )² = a² - 2ab + b² ]

⇒ y² - 4y + 4 + y - 7 = 0

⇒ y² - 4y + y + 4 - 7 = 0

⇒ y² - 3y - 3 = 0

Comparing with ax² + bx + c = 0, we get,

  • a = 1
  • b = - 3
  • c = - 3

Now,

b² - 4ac = ( - 3 )² - 4 * 1 * ( - 3 )

⇒ b² - 4ac = 9 - 4 * ( - 3 )

⇒ b² - 4ac = 9 + 12

b² - 4ac = 21

Now, we know that,

\displaystyle{\pink{\sf\:y\:=\:\dfrac{-\:b\:\pm\:\sqrt{b^2\:-\:4ac}}{2a}}\sf\:\:\:-\:-\:-\:[\:Quadratic\:Formula\:]}

\displaystyle{\implies\sf\:y\:=\:\dfrac{-\:(\:-\:3\:)\:\pm\:\sqrt{21}}{2\:\times\:1}}

\displaystyle{\implies\boxed{\red{\sf\:y\:=\:\dfrac{3\:\pm\:\sqrt{21}}{2}}}}

Now, by resubstituting y = ( x² + 5x ), we get,

\displaystyle{\implies\sf\:y\:=\:x^2\:+\:5x}

\displaystyle{\implies\underline{\boxed{\red{\sf\:x^2\:+\:5x\:=\:\dfrac{3\:\pm\:\sqrt{21}}{2}}}}}


ILLUSTRIOUS27: thank you for ur answer
Similar questions