Computer Science, asked by Anonymous, 4 months ago

\sf{\underline\pink{Question:-}}

the length and breadth of a rectangular field are the ratio 3:2 it is the area of the field is 3456 m find the cost of fencing the field 4.50 per metre

\sf{\underline\red{note:-}}

\sf{\underline\pink{❌no spamming❌}}
\sf{\underline\pink{❌no irreverent answer ❌}}

Answers

Answered by TRISHNADEVI
6

QUESTION :

 \\

  • ➫ The length and breadth of a rectangular field are the ratio 3:2. The area of the field is 3456 square metre. Find the cost of fencing the field at Rs. 4.50 per metre.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

SOLUTION :

 \\  \\

Given :-

  • Ratio of length and breadth of the rectangular field = 3 : 2

  • Area of the rectangular field = 3456 square metre

  • Cost of fencing the field per metre = Rs. 4.50

 \\

To Find :-

  • Cost of fencing the whole rectangular field = ?

 \\

Required formulas :-

 \\

 \bigstar \:  \:  \boxed{ \rm{ \: Area  \:  \: of \:  \:  rectangle = Length \times  Breadth \: }}  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \:  \:  \:  \:  \:  \:  \bigstar \:  \:  \boxed{ \rm{ \: Perimeter \:  \:  of \:  \:  rectangle = 2 \:  (Length +  Breadth) \: }}

 \\

Calculation :-

 \\

Suppose,

  • The length of the rectangular field, l = 3x

  • The breadth of the rectangular field, b = 2x

 \\

According to question,

 \\

  \:  \:  \:  \: \bigstar \:  \:  \sf{ \large{Length \times  Breadth = Area }} \\  \\ \sf{ \large{ \implies \: 3x  \times 2x = 3496}}  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf{ \large{ \implies \: 6x {}^{2}  = 3456}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf{ \large{ \implies \: x {}^{2}  =  \dfrac{3456}{6} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf{ \large{ \implies \: x {}^{2}  = 576}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf{ \large{ \implies \: x =  \sqrt{576} }}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf{ \large{ \therefore \: x = 24}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Hence,

 \\

 \:  :  \mapsto \: \bold{ Length,l  =3x = 3 \times 24 =  \underline{ \: 72 \: m \: }} \\  \\  \:  :  \mapsto \: \bold{ Breadth,b = 2x = 2 \times 24 =  \underline{48 \: m \: }}

 \\

Again,

 \\

 \bigstar \:  \:  \sf{Perimeter  \:  \: of  \:  \: the \: \: rectangular \:  \:  field = 2 \: (l + b) }\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \{2 \: (72 + 48) \} \:  \: m} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ = (2 \times 120) \:  \: m} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = 240 \: \:  m}

 \\

Now,

 \\

 \bigstar \:  \: \sf{Cost  \:  \: of  \:  \: fencing \:  the  \:  \: field  \:  \: per  \:  \: metre = Rs. \:  4.50} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \:  \:  \:  \sf{ \therefore \: Cost  \:  \: of \:  \:  fencing \:  \:  the  \:  \: field  \:  \: of \:  \:  240  \: m = Rs. \:  (240 \times  4.50)} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \sf{ =  \underline{ \: Rs. \:  1080 \: }}

 \\

  • Hence, the cost of fencing the rectangular field at Rs. 4.50 per metre is Rs. 1080.

\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

ANSWER :

 \\

  • ➬ If the length and breadth of a rectangular field are the ratio 3:2 and the area of the field is 3456 square metre, then the cost of fencing the field at Rs. 4.50 per metre is Rs. 1080.
Similar questions