Math, asked by TheBrainliestUser, 1 month ago

 \small {\mathrm{ If  \:  \: y  = \sqrt{x}  \sin x +\sin\sqrt{x}  } } \\  \\
 \small {\mathrm{ Show  \:  \: that \:  \: \dfrac{dy}{dx}  =\dfrac{1}{2 \sqrt{x} }(\sin x + 2x \cos x + \cos  \sqrt{x}) } } \\  \\
Explanation needed..!!

Answers

Answered by MrImpeccable
60

ANSWER:

Given:

\:\:\bullet\:\:y=\sqrt{x}\sin x+\sin\sqrt{x}

To Prove:

\:\:\bullet\:\:\dfrac{dy}{dx}=\dfrac{1}{2\sqrt{x}}\left(\sin x+2x\cos x+\cos\sqrt{x}\right)

Proof:

We are given that,

\implies y=\sqrt{x}\sin x+\sin\sqrt{x}

Differentiating both sides, w.r.t. x,

\implies\dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\sqrt{x}\sin x+\sin\sqrt{x}\bigg)

We know that,

\hookrightarrow\dfrac{d}{dx}\left(f(x)+g(x)\bigg)=\dfrac{d}{dx}\left(f(x)\bigg)+\dfrac{d}{dx}\left(g(x)\bigg)

So,

\implies\dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\sqrt{x}\sin x+\sin\sqrt{x}\bigg)

\implies\dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\sqrt{x}\sin x\bigg)+\dfrac{d}{dx}\bigg(\sin\sqrt{x}\bigg)

We know that, by product rule,

\hookrightarrow [f(x)g(x)]'=f(x)g'(x)+g(x)f'(x)

And, by chain rule,

\hookrightarrow [f(g(x))]' = f'(g(x))\times g'(x)

So, applying product rule in first term, and chain rule in both,

\implies\dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\sqrt{x}\sin x\bigg)+\dfrac{d}{dx}\bigg(\sin\sqrt{x}\bigg)

\implies\dfrac{dy}{dx}=\left(\sqrt{x}\dfrac{d}{dx}\left(\sin x\right)+\sin x\dfrac{d}{dx}\left(\sqrt{x}\right)\right)+\left(\dfrac{d}{dx}\left(\sin\sqrt{x}\right)\times\dfrac{d}{dx}\left(\sqrt{x}\right)\right)

We know that,

\hookrightarrow\dfrac{d}{dx}\sin x=\cos x

\hookrightarrow\dfrac{d}{dx}\sqrt{x}= \dfrac{d}{dx}x^{\frac{1}{2}}=\dfrac{1\times x^{\frac{1}{2}-1}}{2} =\dfrac{1\times x^{\frac{-1}{2}}}{2}=\dfrac{1}{2\sqrt{x}}

And,

\hookrightarrow\dfrac{d}{dx} x=1

So,

\implies\dfrac{dy}{dx}=\left(\sqrt{x}\dfrac{d}{dx}\left(\sin x\right)+\sin x\dfrac{d}{dx}\left(\sqrt{x}\right)\right)+\left(\dfrac{d}{dx}\left(\sin\sqrt{x}\right)\times\dfrac{d}{dx}\left(\sqrt{x}\right)\right)

\implies\dfrac{dy}{dx}=\left((\sqrt{x}\times\cos x)+\left(\sin x\times\dfrac{1}{2\sqrt{x}}\right)\right)+\left(\cos\sqrt{x}\times\dfrac{1}{2\sqrt{x}}\right)

\implies\dfrac{dy}{dx}=\sqrt{x}\cos x+\dfrac{\sin x}{2\sqrt{x}}+\dfrac{\cos\sqrt{x}}{2\sqrt{x}}\right)

Taking LCM,

\implies\dfrac{dy}{dx}=\dfrac{(\sqrt{x}\cos x)(2\sqrt{x})}{2\sqrt{x}}+\dfrac{\sin x}{2\sqrt{x}}+\dfrac{\cos\sqrt{x}}{2\sqrt{x}}\right)

\implies\dfrac{dy}{dx}=\dfrac{2x\cos x}{2\sqrt{x}}+\dfrac{\sin x}{2\sqrt{x}}+\dfrac{\cos\sqrt{x}}{2\sqrt{x}}\right)

Taking 1/2√x common,

\implies\dfrac{dy}{dx}=\dfrac{2x\cos x}{2\sqrt{x}}+\dfrac{\sin x}{2\sqrt{x}}+\dfrac{\cos\sqrt{x}}{2\sqrt{x}}\right)

\implies\dfrac{dy}{dx}=\dfrac{1}{2\sqrt{x}}\bigg(2x\cos x+\sin x+\cos\sqrt{x}\bigg)

Rearranging the terms,

\implies\bf\dfrac{dy}{dx}=\dfrac{1}{2\sqrt{x}}\bigg(sin x+2x\,cos x+cos\sqrt{x}\bigg)

Hence Proved!!

Answered by brainlyanswerer83
50

Hey User ,

pls, refer to the attachment done by me.

Attachments:
Similar questions