Math, asked by ayantika13, 2 months ago


 \sqrt{1 + cos 30}  \div  \sqrt{1  -  cos 30}  - tan60 = cosec30
Prove ​

Answers

Answered by pratzzchaudhry
2

Step-by-step explanation:

THE ANSWER OF UR QUESTION...

 \cos( \sqrt{30 + 1 = 901....( \sqrt{ \cos(30 - 1 = 899) } } ) .... \\  \tan(60 \div 2 \cos( = 30 \csc(?) ) )

I M IN STANDARD 8 SO..IT MAY CORRECT OR NOT CORRECT.

Attachments:
Answered by MysticSohamS
2

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: prove =  \\  \\   \frac{ \sqrt{1 + cos \: 30} }{ \sqrt{1 - cos \: 30} }  \:  - tan \: 60 = cosec \: 30 \\  \\ le t\: then \\  \\ LHS =  \frac{ \sqrt{1 + cos \: 30} }{ \sqrt{1 - cos \: 30} }  \:  - tan \:  60 \\  \\ RHS = cosec \: 30 \\  \\

considering \: LHS \\  we \: know \: that \\  \\ cos \: 30 =  \frac{ \sqrt{3} }{2}  \\  \\ thus \: then \\  \\  =  \frac{ \sqrt{1 + cos \: 30} }{ \sqrt{1 - cos \: 30} }  \:  - tan \: 60 \\  \\  =  \frac{ \sqrt{1 +  \frac{ \sqrt{3} }{2} } }{ \sqrt{1 -  \frac{ \sqrt{3} }{2} } }  \:  - tan \: 60 \\  \ \\  =  \frac{ \frac{ \frac{ \sqrt{2 +  \sqrt{3} } }{ \sqrt{2} } }{ \sqrt{2 -  \sqrt{3} } } }{ \sqrt{2} }  \:  - tan \: 60 \\  \\    =  \frac{ \sqrt{2 +  \sqrt{3} } }{ \sqrt{2 -  \sqrt{3} } }  \:  - tan \: 60 \\  \\ so \: rationalising \:  \: denominator \\ we \: get \\  \\  =   \frac{ \sqrt{2 +  \sqrt{3} } }{ \sqrt{2 -  \sqrt{3} } }  \times  \frac{ \sqrt{2 +  \sqrt{3} } }{  \sqrt{2 +  \sqrt{3} }   }  \:  - tan \: 60 \\  \\  =  \frac{( \sqrt{2 +  \sqrt{3} } \:  ) {}^{2} }{( \sqrt{2 -  \sqrt{3} })( \sqrt{2 +  \sqrt{3} }) {}  }   - tan \: 60\\  \\  =  \frac{2 +  \sqrt{3} }{(2 -  \sqrt{3} )(2 +  \sqrt{3} )}  -  \: tan \: 60 \\  \\ \\   =  \frac{2 +  \sqrt{3} }{(2) {}^{2}  - ( \sqrt{3} ) {}^{2} }  \:  - tan \: 60 \\  \\  =  \frac{2 +  \sqrt{3} }{4 - 3}  \:  - tan \: 60 \\  \\  =  \frac{2 +  \sqrt{3} }{1}  \:  - tan \: 60 \\  \\  = 2 +  \sqrt{3}  - tan \: 60 \\  \\ we \: have \\ tan \: 60 =  \sqrt{3}  \\  \\ thus \: then \\  \\  LHS= 2

now \: considering \:  \: RHS \\ we \: know \: that \\  \\ cosec \: 30 = 2 \\  \\ thus \: then \:  \\ RHS = 2

hence \: then \\ LHS=RHS \\  \\ thus \: proved

Similar questions