Math, asked by OmShende10, 9 months ago


 \sqrt{12 + i16}
plsss help me fast​

Answers

Answered by TanikaWaddle
1

To calculate:

\sqrt{12+i16}  =?

Let us write concept for value of i first of all.

1.\ i = \sqrt{-1}\\2.\ i^2=-1

Taking 4 common inside square root:

\Rightarrow \sqrt{4(3+i4)}\\\Rightarrow 2\sqrt{(3+i4)}  (\because \sqrt4=2) ...... (1)

Now, let us solve for: (3+i4)

Adding and subtracting 1 from (3+i4):

\Rightarrow (3+i4 +1-1)\\\Rightarrow (3 +1-1 +i4)\\\Rightarrow (4+(-1) +i4) \\\\\text{Using property 2 written above, writing } -1 =i^2\\\Rightarrow (4+i^2 +i4) \\\Rightarrow (2^2+i^2 +2 \times i \times 2)\\\Rightarrow (2+i)^2  (\because a^2+b^2+2 \times a \times b = (a+b)^2)\\

Putting value of (3+i4) in equation (1):

\Rightarrow 2\sqrt{(3+i4)} = 2\sqrt{(2+i)^2}\\\Rightarrow \pm 2(2+i)

So, the simplified form of \sqrt{12+i16}  =\pm 2(2+i)

Similar questions