Math, asked by yashi455, 1 year ago


 \sqrt{5   \:  \:  +  \sqrt{3 \div  \sqrt{5 -  \sqrt{3 = a + b \sqrt{15} } } } }

Answers

Answered by LovelyG
9

Correct Question: If √5 + √3/√5 - √3 = a + b√15, find the value of a and b.

Answer:

\large{\underline{\boxed{\sf a = 4 \: \: and \: \: b = 1}}}

Step-by-step explanation:

Given that-

 \implies \sf  \dfrac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  = a + b \sqrt{15}

Consider LHS:

 \implies \sf  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }   \times  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} +  \sqrt{3}} \\  \\ \implies \sf   \frac{ (\sqrt{5}  +  \sqrt{3} ) {}^{2} }{( \sqrt{5} ) {}^{2}  - ( \sqrt{3} ) {}^{2} }  \\  \\ \implies \sf   \frac{( \sqrt{5}) {}^{2}  +  {( \sqrt{3} )}^{2} + 2 \times  \sqrt{5}  \times  \sqrt{3} }{5 - 3}  \\  \\ \implies \sf   \frac{5 + 3 + 2 \sqrt{15} }{2}  \\  \\ \implies \sf   \frac{8 + 2 \sqrt{15} }{2}  \\  \\ \implies \sf   \frac{2(4 +  \sqrt{15} )}{2}  \\  \\ \implies \sf  4 +  \sqrt{15}

On comparing the LHS with RHS , we get-

\implies \sf  4 +  \sqrt{15}  = a +  \sqrt{15}  \\  \\  \boxed{\bf \therefore \: a = 4 \:  \: and \:  \: b = 1}

Similar questions