Math, asked by sonal2004, 11 months ago


 \sqrt{5}  +  \sqrt{5 - x}  \div  \sqrt{5}  -  \sqrt{5 - x }  = 3
prove this ...​

Answers

Answered by Sharad001
59

Question :-

Solve for "x"

 \frac{ \sqrt{5}  +  \sqrt{5 - x} }{ \sqrt{5}  -  \sqrt{5 - x} }  = 3 \\

Answer :-

 \rightarrow  \boxed{\: x =  -  \frac{25}{4} } \:

Explanation :-

we have ,

\frac{ \sqrt{5}  +  \sqrt{5 - x} }{ \sqrt{5}  -  \sqrt{5 - x} }   = 3 \\ \:  \\  \rightarrow \frac{ \sqrt{5}  +  \sqrt{5 - x} }{ \sqrt{5}  - \sqrt{5 - x} }   \bigg( \frac{ \sqrt{5}  +  \sqrt{5 - x} }{ \sqrt{5}   +   \sqrt{5 - x} }   \bigg)  = 3 \\  \\  \rightarrow \:  \frac{ {( \sqrt{5}  +  \sqrt{5 - x}) }^{2} }{5 - 5 + x}  = 3 \\  \\  \rightarrow \: 5 + 5 - x + 2 \sqrt{5}  \sqrt{5 - x}  = 3x \\  \\  \rightarrow \: 2 \sqrt{5( 5 - x)}  = 4x + 10 \\  \\ \sf{ squaring \: on \: both \: sides \: } \\  \\  \rightarrow \: 4(25 - 5x) = 16 {x}^{2}  + 100 + 80x \\  \\  \rightarrow \: 100 - 20x = 16 {x}^{2}  + 80x + 100 \\  \\  \rightarrow \:  16 {x}^{2}  + 100x = 0 \\  \\  \rightarrow \: 16 {x}^{2}  =  - 100x \\  \\  \rightarrow  \boxed{\: x =  -  \frac{25}{4} }

_________________

Similar questions