Find dy /dx
Answers
Hii its tom85
your solution is attached above
______/\______☺️
Hope it may helps you
Answer:
If x=sin3tcos2t−−−−−√x=sin3tcos2t and y=cos3tcos2t−−−−−√,y=cos3tcos2t, Then dydxdydx in terms of tt
MyTry::MyTry::
Using The
Formula dydx=dydtdxdt.dydx=dydtdxdt.
Now Given
x=sin3tcos2t−−−−−√.
x=sin3tcos2t.
So
dxdt=cos2t−−−−−√⋅3sin2t⋅cost−sin3t⋅12cos2t√⋅−sin2t⋅2tcos2t
dxdt=cos2t⋅3sin2t⋅cost−sin3t⋅12cos2t⋅−sin2t⋅2tcos2t
So we get
dxdt=cos2t⋅3sin2t⋅cost+sin3t⋅sin2t⋅tcos2t⋅cos2t−−−−−√
dxdt=cos2t⋅3sin2t⋅cost+sin3t⋅sin2t⋅tcos2t⋅cos2t
Similarly Given
y=cos3tcos2t−−−−−√.
y=cos3tcos2t.
So
dydt=−cos2t−−−−−√⋅3cos2t⋅sint−cos3t⋅12cos2t√⋅−sin2t⋅2tcos2t
dydt=−cos2t⋅3cos2t⋅sint−cos3t⋅12cos2t⋅−sin2t⋅2tcos2t
So we get
dydt=−cos2t⋅3cos2t⋅sint+cos3t⋅sin2t⋅tcos2t⋅cos2t−−−−−√
dydt=−cos2t⋅3cos2t⋅sint+cos3t⋅sin2t⋅tcos2t⋅cos2t
So
dydx=−3cos2t⋅sint⋅cos2t+cos3t⋅sin2t⋅tcos2t⋅3sin2t⋅cost+sin3t⋅sin2t⋅t
dydx=−3cos2t⋅sint⋅cos2t+cos3t⋅sin2t⋅tcos2t⋅3sin2t⋅cost+sin3t⋅sin2t⋅t